2 resultados para EFFLUX

em WestminsterResearch - UK


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Current evidence indicates that chylomicron remnants (CMR) induce macrophage foam cell formation, an early event in atherosclerosis. Inflammation also plays a part in atherogenesis and the transcription factor nuclear factor-kappaB (NF-kappaB) has been implicated. In this study, the influence of CMR on the activity of NF-kappaB in macrophages and its modulation by the fatty acid composition of the particles were investigated using macrophages derived from the human monocyte cell line THP-1 and CMR-like particles (CRLPs). Incubation of THP-1 macrophages with CRLPs caused decreased NF-kappaB activation and downregulated the expression of phospho-p65-NF-kappaB and phospho-IkappaBalpha (pIkappaBalpha). Secretion of the inflammatory cytokines tumour necrosis factor alpha, interleukin-6 and monocyte chemoattractant protein-1, which are under NF-kappaB transcriptional control, was inhibited and mRNA expression for cyclooxygenase-2, an NF-kappaB target gene, was reduced. CRLPs enriched in polyunsaturated fatty acids compared with saturated or monounsaturated fatty acids had a markedly greater inhibitory effect on NF-kappaB binding to DNA and the expression of phospho-p65-NF-kappaB and pIkappaB. Lipid loading of macrophages with CRLPs enriched in polyunsaturated fatty acids compared with monounsaturated fatty acids or saturated fatty acids also increased the subsequent rate of cholesterol efflux, an effect which may be linked to the inhibition of NF-kappaB activity. These findings demonstrate that CMR suppress NF-kappaB activity in macrophages, and that this effect is modulated by their fatty acid composition. This downregulation of inflammatory processes in macrophages may represent a protective effect of CMR which is enhanced by dietary polyunsaturated fatty acids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The accumulation of foam cells in the artery wall causes fatty streaks, the first lesions in atherosclerosis. LDL (low-density lipoprotein) plays a major role in foam cell formation, although prior oxidation of the particles is required. Recent studies, however, have provided considerable evidence to indicate that CMRs (chylomicron remnants), which carry dietary lipids in the blood, induce foam cell formation without oxidation. We have shown that CMRs are taken up by macrophages and induce accumulation of both triacylglycerol and cholesterol, and that the rate of uptake and amount of lipid accumulated is influenced by the type of dietary fat in the particles. Furthermore, oxidation of CMRs, in striking contrast with LDL, inhibits, rather than enhances, their uptake and induction of lipid accumulation. In addition, the lipid accumulated after exposure of macrophages to CMRs is resistant to efflux, and this may be due to its sequestration in lysosomes. These findings demonstrate that CMRs induce pro-atherogenic changes in macrophages, and that their effects may be modulated by dietary factors including oxidized fats, lipophilic antioxidants and the type of fat present.