2 resultados para Dynamic modeling
em WestminsterResearch - UK
Resumo:
An innovation network can be considered as a complex adaptive system with evolution affected by dynamic environments. This paper establishes a multi-agent-based evolution model of innovation networks under dynamic settings through computational and logical modeling, and a multi-agent system paradigm. This evolution model is composed of several sub-models of agents' knowledge production by independent innovations in dynamic situations, knowledge learning by cooperative innovations covering agents' heterogeneities, decision-making for innovation selections, and knowledge update considering decay factors. On the basis of above-mentioned sub-models, an evolution rule for multi-agent based innovation network system is given. The proposed evolution model can be utilized to simulate and analyze different scenarios of innovation networks in various dynamic environments and support decision-making for innovation network optimization.
Resumo:
A prominent hypothesis states that specialized neural modules within the human lateral frontopolar cortices (LFPCs) support “relational integration” (RI), the solving of complex problems using inter-related rules. However, it has been proposed that LFPC activity during RI could reflect the recruitment of additional “domain-general” resources when processing more difficult problems in general as opposed to RI specifi- cally. Moreover, theoretical research with computational models has demonstrated that RI may be supported by dynamic processes that occur throughout distributed networks of brain regions as opposed to within a discrete computational module. Here, we present fMRI findings from a novel deductive reasoning paradigm that controls for general difficulty while manipulating RI demands. In accordance with the domain- general perspective, we observe an increase in frontoparietal activation during challenging problems in general as opposed to RI specifically. Nonetheless, when examining frontoparietal activity using analyses of phase synchrony and psychophysiological interactions, we observe increased network connectivity during RI alone. Moreover, dynamic causal modeling with Bayesian model selection identifies the LFPC as the effective connectivity source. Based on these results, we propose that during RI an increase in network connectivity and a decrease in network metastability allows rules that are coded throughout working memory systems to be dynamically bound. This change in connectivity state is top-down propagated via a hierarchical system of domain-general networks with the LFPC at the apex. In this manner, the functional network perspective reconciles key propositions of the globalist, modular, and computational accounts of RI within a single unified framework.