2 resultados para Distributed Virtual Environments

em WestminsterResearch - UK


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Research on the mechanisms and processes underlying navigation has traditionally been limited by the practical problems of setting up and controlling navigation in a real-world setting. Thanks to advances in technology, a growing number of researchers are making use of computer-based virtual environments to draw inferences about real-world navigation. However, little research has been done on factors affecting human–computer interactions in navigation tasks. In this study female students completed a virtual route learning task and filled out a battery of questionnaires, which determined levels of computer experience, wayfinding anxiety, neuroticism, extraversion, psychoticism and immersive tendencies as well as their preference for a route or survey strategy. Scores on personality traits and individual differences were then correlated with the time taken to complete the navigation task, the length of path travelled,the velocity of the virtual walk and the number of errors. Navigation performance was significantly influenced by wayfinding anxiety, psychoticism, involvement and overall immersive tendencies and was improved in those participants who adopted a survey strategy. In other words, navigation in virtual environments is effected not only by navigational strategy, but also an individual’s personality, and other factors such as their level of experience with computers. An understanding of these differences is crucial before performance in virtual environments can be generalised to real-world navigational performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we describe a decentralized privacy-preserving protocol for securely casting trust ratings in distributed reputation systems. Our protocol allows n participants to cast their votes in a way that preserves the privacy of individual values against both internal and external attacks. The protocol is coupled with an extensive theoretical analysis in which we formally prove that our protocol is resistant to collusion against as many as n-1 corrupted nodes in the semi-honest model. The behavior of our protocol is tested in a real P2P network by measuring its communication delay and processing overhead. The experimental results uncover the advantages of our protocol over previous works in the area; without sacrificing security, our decentralized protocol is shown to be almost one order of magnitude faster than the previous best protocol for providing anonymous feedback.