3 resultados para Developmental pathways
em WestminsterResearch - UK
Resumo:
This programme of research used a developmental psychopathology approach to investigate females across the adolescent period. A two-sided story is presented; first, a study of neuroendocrine and psychosocial parameters in a group of healthy female adolescents (N = 63), followed by a parallel study of female adolescents with anorexia nervosa (AN) (N = 8). A biopsychosocial, multi-method measurement approach was taken, which utilised self-report, interview and hypothalamic-pituitary-adrenocortical (HPA) axis measures. Saliva samples for the measurement of cortisol and DHEA were collected using the best-recommended methodology: multiple samples over the day, strict reference to time of awakening, and two consecutive sampling weekdays. The research was adolescent-orientated: specifically, by using creative and ageappropriate strategies to ensure participant adherence to protocol, as well as more generally by adopting various procedures to facilitate engagement with the research process. In the healthy females mean (± SD) age 13.9 (± 2.7) years, cortisol and DHEA secretion exhibited typical adult-like diurnal patterns. Developmental markers of chronological age, menarche status and body mass index (BMI) had differential associations with cortisol and DHEA secretory activity. The pattern of the cortisol awakening response (CAR) was sensitive to whether participants had experienced first menses, but not to chronological age or BMI. Those who were post-menarche generally reached their peak point of cortisol secretion at 45 minutes post-awakening, in contrast to the pre-menarche group who were more evenly spread. Subsequent daytime cortisol levels were also higher in post-menarche females, and this effect was also noted for increasing age and BMI. Both morning and evening DHEA were positively associated with developmental markers. None of the situational or self-report psychosocial variables that were measured modulated any of the key findings regarding cortisol and DHEA secretion. The healthy group of girls were within age-appropriate norms for all the self-report measures used, however just under half of this group were insecurely attached (as assessed by interview). Only attachment style was associated with neuroendocrine parameters. In particular, those with an anxious insecure style exhibited a higher awakening sample (levels were 7.16 nmol/l, 10.40 nmol/l and 7.93 nmol/l for secure, anxious and avoidant groups, respectively) and a flatter CAR (mean increases over the awakening period were 6.38 nmol/l, 2.32 nmol/l and 8.61 nmol/l for secure, anxious and avoidant groups, respectively). The afore-mentioned pattern is similar to that consistently associated with psychological disorder in adults, and so this may be a pre-clinical vulnerability factor for subsequent mental health problems. A group of females with AN, mean (± SD) age 15.1 (± 1.6) years, were recruited from a specialist residential clinic and compared to the above group of healthy control (HC) female adolescents. A general picture of cortisol and DHEA hypersecretion was revealed in those with AN. The mean (± SD) change exhibited in cortisol levels over the 30 minute post-awakening period was 7.05 nmol/l (± 5.99) and 8.33 nmol/l (± 6.41) for HC and AN groups, respectively. The mean (± SD) evening cortisol level for the HC girls was 1.95 nmol/l (± 2.11), in comparison to 6.42 nmol/l (± 11.10) for the AN group. Mean (± SD) morning DHEA concentrations were 1.47 nmol/l (± 0.85) and 2.25 nmol/l (± 0.88) for HC and AN groups, respectively. The HC group’s mean (± SD) concentration of 12 hour DHEA was 0.55 nmol/l (± 0.46) and the AN group’s mean level was 0.89 nmol/l (± 0.90). This adrenal steroid hypersecretion evidenced by the AN group was not associated with BMI or eating disorder symptomatology. Insecure attachment characterised by fearfulness and anger was most apparent; a style which was unparalleled in the healthy group of female adolescents. The causal directions of the AN group findings remain unclear. Examining some of the participants with AN as case studies one year post-discharge from the clinic illustrated that for one participant who was recovered, in terms of returning to ordinary school life and no longer exhibiting clinical levels of eating disorder symptomatology, her CARs were no longer inconsistent over sampling days and her DHEA levels were also now generally comparable to the healthy control group. For another participant who had not recovered from her AN one year later, the profile of her CAR continued to be inconsistent over sampling days and her DHEA concentrations over the diurnal period were significantly higher in comparison to the healthy control group. In its entirety, this work’s unique contribution lies in its consideration of methodological and developmental issues specifically pertaining to adolescents. Findings also contribute to knowledge of AN and understanding of vulnerability factors, and how these may be used to develop interventions dedicated to improving adolescent health.
Resumo:
The mammalian midbrain dopaminergic systems arising in the substantia nigra pars compacta (SNc) and ventral tegmental area (VTA) are critical for coping behaviours and are implicated in neuropsychiatric disorders where early life challenges comprise significant risk factors. Here, we aimed to advance our hypothesis that glucocorticoids (GCs), recognised key players in neurobiological programming, target development within these systems, with a novel focus on the astrocytic population. Mice received antenatal GC treatment (AGT) by including the synthetic GC, dexamethasone, in the mothers' drinking water on gestational days 16-19; controls received normal drinking water. Analyses of regional shapes and volumes of the adult SNc and VTA demonstrated that AGT induced long-term, dose-dependent, structural changes that were accompanied by profound effects on astrocytes (doubling/tripling of numbers and/or density). Additionally, AGT induced long-term changes in the population size and distribution of SNc/VTA dopaminergic neurons, confirming and extending our previous observations made in rats. Furthermore, glial/neuronal structural remodelling was sexually dimorphic and depended on the AGT dose and sub-region of the SNc/VTA. Investigations within the neonatal brain revealed that these long-term organisational effects of AGT depend, at least in part, on targeting perinatal processes that determine astrocyte density and programmed cell death in dopaminergic neurons. Collectively, our characterisation of enduring, AGT-induced, sex-specific cytoarchitectural disturbances suggests novel mechanistic links for the strong association between early environmental challenge (inappropriate exposure to excess GCs) and vulnerability to developing aberrant behaviours in later life, with translational implications for dopamine-associated disorders (such as schizophrenia, ADHD, autism, depression), which typically show a sex bias
Resumo:
The AMPA-receptor subunit GluA4 is expressed transiently in CA1 pyramidal neurons at the time synaptic connectivity is forming, but its physiological significance is unknown. Here we show that GluA4 expression is sufficient to alter the signaling requirements of long-term potentiation (LTP) and can fully explain the switch in the LTP kinase dependency from PKA to Ca2(+)/calmodulin-dependent protein kinase II during synapse maturation. At immature synapses, activation of PKA leads to a robust potentiation of AMPA-receptor function via the mobilization of GluA4. Analysis of GluA4-deficient mice indicates that this mechanism is critical for neonatal PKA-dependent LTP. Furthermore, lentiviral expression of GluA4 in CA1 neurons conferred a PKA-dependent synaptic potentiation and LTP regardless of the developmental stage. Thus, GluA4 defines the signaling requirements for LTP and silent synapse activation during a critical period of synapse development.