1 resultado para Deterministic Expander
em WestminsterResearch - UK
Filtro por publicador
- Aberdeen University (4)
- Aberystwyth University Repository - Reino Unido (3)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (2)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Aquatic Commons (6)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (5)
- Aston University Research Archive (4)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (12)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (15)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (20)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (3)
- Boston University Digital Common (7)
- Brock University, Canada (4)
- CaltechTHESIS (10)
- Cambridge University Engineering Department Publications Database (46)
- CentAUR: Central Archive University of Reading - UK (113)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (19)
- Cochin University of Science & Technology (CUSAT), India (18)
- CORA - Cork Open Research Archive - University College Cork - Ireland (4)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- CUNY Academic Works (2)
- Dalarna University College Electronic Archive (4)
- Department of Computer Science E-Repository - King's College London, Strand, London (5)
- DigitalCommons@University of Nebraska - Lincoln (3)
- Diposit Digital de la UB - Universidade de Barcelona (2)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (7)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (6)
- Greenwich Academic Literature Archive - UK (7)
- Helda - Digital Repository of University of Helsinki (15)
- Indian Institute of Science - Bangalore - Índia (134)
- Instituto Politécnico do Porto, Portugal (22)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (9)
- Ministerio de Cultura, Spain (1)
- Nottingham eTheses (2)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (80)
- Queensland University of Technology - ePrints Archive (132)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (13)
- Repositório Institucional da Universidade de Aveiro - Portugal (7)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (77)
- RU-FFYL. Repositorio de la Facultad de Filosofiía y Letras. UNAM. - Mexico (1)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- Universidad de Alicante (2)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (5)
- Universidade Federal do Pará (4)
- Universidade Federal do Rio Grande do Norte (UFRN) (10)
- Universitat de Girona, Spain (5)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (14)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (21)
- University of Michigan (5)
- University of Queensland eSpace - Australia (5)
- University of Washington (1)
- WestminsterResearch - UK (1)
Resumo:
This paper introduces a novel method of estimating theFourier transform of deterministic continuous-time signals from a finite number N of their nonuniformly spaced measurements. These samples, located at a mixture of deterministic and random time instants, are collected at sub-Nyquist rates since no constraints are imposed on either the bandwidth or the spectral support of the processed signal. It is shown that the proposed estimation approach converges uniformly for all frequencies at the rate N^−5 or faster. This implies that it significantly outperforms its alias-free-sampling-based predecessors, namely stratified and antithetical stratified estimates, which are shown to uniformly convergence at a rate of N^−1. Simulations are presented to demonstrate the superior performance and low complexity of the introduced technique.