2 resultados para Demand-Responsive Transportation Systems.

em WestminsterResearch - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose - The roles of ‘conventional’ (fixed-route and fixed-timetable) bus services is examined and compared to demand-responsive services, taking rural areas in England as the basis for comparison. It adopts a ‘rural’ definition of settlements under a population of 10,000. Design/methodology/approach - Evidence from the National Travel Survey, technical press reports and academic work is brought together to examine the overall picture. Findings - Inter-urban services between towns can provide a cost-effective way of serving rural areas where smaller settlements are suitably located. The cost structures of both fixed-route and demand-responsive services indicate that staff time and cost associated with vehicle provision are the main elements. Demand-responsive services may enable larger areas to be covered, to meet planning objectives of ensuring a minimum of level of service, but experience often shows high unit cost and public expenditure per passenger trip. Economic evaluation indicates user benefits per passenger trip of similar magnitude to existing average public expenditure per trip on fixed-route services. Considerable scope exists for improvements to conventional services through better marketing and service reliability. Practical implications - The main issue in England is the level of funding for rural services in general, and the importance attached to serving those without access to cars in such areas. Social implications - The boundary between fixed-route and demand-responsive operation may lie at relatively low population densities. Originality/value - The chapter uses statistical data, academic research and operator experience of enhanced conventional bus services to provide a synthesis of outcomes in rural areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En route speed reduction can be used for air traffic flow management (ATFM), e.g., delaying aircraft while airborne or realizing metering at an arrival fix. In previous publications, the authors identified the flight conditions that maximize the airborne delay without incurring extra fuel consumption with respect to the nominal (not delayed) flight. In this paper, the effect of wind on this strategy is studied, and the sensitivity to wind forecast errors is also assessed. A case study done in Chicago O’Hare airport (ORD) is presented, showing that wind has a significant effect on the airborne delay that can be realized and that, in some cases, even tailwinds might lead to an increase in the maximum amount of airborne delay. The values of airborne delay are representative enough to suggest that this speed reduction technique might be useful in a real operational scenario. Moreover, the speed reduction strategy is more robust than nominal operations against fuel consumption in the presence of wind forecast uncertainties.