4 resultados para Degraded steppe
em WestminsterResearch - UK
Resumo:
This paper presents the design analysis of novel tunable narrow-band bandpass sigma-delta modulators, which can achieve concurrent multiple noise-shaping for multi-tone input signals. Four different design methodologies based on the noise transfer functions of comb filters, slink filters, multi-notch filters and fractional delay comb filters are applied for the design of these multiple-band sigma-delta modulators. The latter approach utilises conventional comb filters in conjunction with FIR, or allpass IIR fractional delay filters, to deliver the desired nulls for the quantisation noise transfer function. Detailed simulation results show that FIR fractional delay comb filter-based sigma-delta modulators tune accurately to most centre frequencies, but suffer from degraded resolution at frequencies close to Nyquist. However, superior accuracies are obtained from their allpass IIR fractional delay counterpart at the expense of a slight shift in noise-shaping bands at very high frequencies. The merits and drawbacks of each technique for the various sigma-delta topologies are assessed in terms of in-band signal-to-noise ratios, accuracy of tunability and coefficient complexity for ease of implementation.
Resumo:
This paper deals with and details the design of a power-aware adaptive digital image rejection receiver based on blind-source-separation that alleviates the RF analog front-end impairments. Power-aware system design at the RTL level without having to redesign arithmetic circuits is used to reduce the power consumption in nomadic devices. Power-aware multipliers with configurable precision are used to trade-off the image-rejection-ratio (IRR) performance with power consumption. Results of the simulation case studies demonstrate that the IRR performance of the power-aware system is comparable to that of the normal implementation albeit degraded slightly, but well within the acceptable limits.
Resumo:
This paper presents the design analysis of novel tunable narrow-band bandpass sigma-delta modulators, that can achieve concurrent multiple noise-shaping for multi-tone input signals. This approach utilises conventional comb filters in conjunction with FIR, or allpass IIR fractional delay filters, to deliver the desired nulls for the quantisation noise transfer function. Detailed simulation results show that FIR fractional delay comb filter based sigma-delta modulators tune accurately to most centre frequencies, but suffer from degraded resolution at frequencies close to Nyquist. However, superior accuracies are obtained from their allpass IIR fractional delay counterpart at the expense of a slight shift in noise-shaping bands at very high frequencies.
Resumo:
Face recognition from images or video footage requires a certain level of recorded image quality. This paper derives acceptable bitrates (relating to levels of compression and consequently quality) of footage with human faces, using an industry implementation of the standard H.264/MPEG-4 AVC and the Closed-Circuit Television (CCTV) recording systems on London buses. The London buses application is utilized as a case study for setting up a methodology and implementing suitable data analysis for face recognition from recorded footage, which has been degraded by compression. The majority of CCTV recorders on buses use a proprietary format based on the H.264/MPEG-4 AVC video coding standard, exploiting both spatial and temporal redundancy. Low bitrates are favored in the CCTV industry for saving storage and transmission bandwidth, but they compromise the image usefulness of the recorded imagery. In this context, usefulness is determined by the presence of enough facial information remaining in the compressed image to allow a specialist to recognize a person. The investigation includes four steps: (1) Development of a video dataset representative of typical CCTV bus scenarios. (2) Selection and grouping of video scenes based on local (facial) and global (entire scene) content properties. (3) Psychophysical investigations to identify the key scenes, which are most affected by compression, using an industry implementation of H.264/MPEG-4 AVC. (4) Testing of CCTV recording systems on buses with the key scenes and further psychophysical investigations. The results showed a dependency upon scene content properties. Very dark scenes and scenes with high levels of spatial–temporal busyness were the most challenging to compress, requiring higher bitrates to maintain useful information.