3 resultados para Dairy plants.
em WestminsterResearch - UK
Resumo:
A thin-layer chromatography (TLC)-bioautographic method was developed with the aim to detect dipeptidyl peptidase IV (DPP IV) inhibitors from plant extracts. The basic principle of the method is that the enzyme (DPP IV) hydrolyzes substrate (Gly-Pro-p-nitroaniline) into p-nitroaniline (pNA), which diazotizes with sodium nitrite, and then reacts with N-(1-naphthyl) ethylenediamine dihydrochloride in turn to form a rose-red azo dye which provides a rose-red background on the TLC plates. The DPP IV inhibitors showed white spots on the background as they blocked enzymolysis of the substrate to produce pNA. The method was validated with respect to selectivity, sensitivity, linearity, precision, recovery, and stability after optimizing key parameters including plate type, time and temperature of incubation, concentration of substrate, enzyme and derivatization reagents, and absorption wavelength. The results showed good lineary within amounts over 0.01–0.1 μg range for the positive control, diprotin A, with the coefficient of determination (r2) = 0.9668. The limits of detection (LOD) and quantification (LOQ) were 5 and 10 ng, respectively. The recoveries ranged from 98.9% to 107.5%. The averages of the intra- and inter-plate reproducibility were in the range of 4.1–9.7% and 7.6–14.7%, respectively. Among the nine methanolic extracts of medicinal herbs screened for DPP IV inhibitors by the newly developed method, Peganum nigellastrum Bunge was found to have one white active spot, which was then isolated and identified as harmine. By spectrophotometric method, harmine hydrochloride was found to have DPP-IV inhibitory activity of 32.4% at 10 mM comparing to that of 54.8% at 50 μM for diprotin A.
Resumo:
This cross-sectional study investigates whether calcium intakes from dairy and non-dairy sources, and absolute intakes of various dairy products, are associated with periodontitis. The calcium intake (mg/day) of 135 older Danish adults was estimated by a diet history interview and divided into dairy and non-dairy calcium. Dairy food intake (g/day) was classified into four groups: milk, cheese, fermented foods and other foods. Periodontitis was defined as the number of teeth with attachment loss ≥3 mm. Intakes of total dairy calcium (Incidence-rate ratio (IRR) = 0.97; p = 0.021), calcium from milk (IRR = 0.97; p = 0.025) and fermented foods (IRR = 0.96; p = 0.03) were inversely and significantly associated with periodontitis after adjustment for age, gender, education, sucrose intake, alcohol consumption, smoking, physical activity, vitamin D intake, heart disease, visits to the dentist, use of dental floss and bleeding on probing, but non-dairy calcium, calcium from cheese and other types of dairy food intakes were not. Total dairy foods (IRR = 0.96; p = 0.003), milk (IRR = 0.96; p = 0.028) and fermented foods intakes (IRR = 0.97; p = 0.029) were associated with reduced risk of periodontitis, but cheese and other dairy foods intakes were not. These results suggest that dairy calcium, particularly from milk and fermented products, may protect against periodontitis. Prospective studies are required to confirm these findings.