2 resultados para DRINKING-WATER
em WestminsterResearch - UK
Resumo:
The mammalian midbrain dopaminergic systems arising in the substantia nigra pars compacta (SNc) and ventral tegmental area (VTA) are critical for coping behaviours and are implicated in neuropsychiatric disorders where early life challenges comprise significant risk factors. Here, we aimed to advance our hypothesis that glucocorticoids (GCs), recognised key players in neurobiological programming, target development within these systems, with a novel focus on the astrocytic population. Mice received antenatal GC treatment (AGT) by including the synthetic GC, dexamethasone, in the mothers' drinking water on gestational days 16-19; controls received normal drinking water. Analyses of regional shapes and volumes of the adult SNc and VTA demonstrated that AGT induced long-term, dose-dependent, structural changes that were accompanied by profound effects on astrocytes (doubling/tripling of numbers and/or density). Additionally, AGT induced long-term changes in the population size and distribution of SNc/VTA dopaminergic neurons, confirming and extending our previous observations made in rats. Furthermore, glial/neuronal structural remodelling was sexually dimorphic and depended on the AGT dose and sub-region of the SNc/VTA. Investigations within the neonatal brain revealed that these long-term organisational effects of AGT depend, at least in part, on targeting perinatal processes that determine astrocyte density and programmed cell death in dopaminergic neurons. Collectively, our characterisation of enduring, AGT-induced, sex-specific cytoarchitectural disturbances suggests novel mechanistic links for the strong association between early environmental challenge (inappropriate exposure to excess GCs) and vulnerability to developing aberrant behaviours in later life, with translational implications for dopamine-associated disorders (such as schizophrenia, ADHD, autism, depression), which typically show a sex bias
Resumo:
While dehydration has negative effects on memory and attention, few studies have investigated whether drinking water can enhance cognitive performance, and none have addressed this in a real-world setting. In this study we explored the potential benefits of the availability of water for undergraduates. The exam performance of students who brought drinks in to exams was compared with those that did not for three cohorts of undergraduates (N = 447). We employed earlier coursework marks as a measure of underlying ability. Students who brought water to the exam achieved better grades than students who did not. When coursework marks were covaried, this effect remained statistically significant, suggesting that this finding was not simply due to more able students being more likely to bring in water. This implies that water consumption may facilitate performance in real-world settings, and, therefore, have specific implications for the assessment of undergraduate learners under examination conditions, but further research is required to evaluate this hypothesis.