4 resultados para Content Image Retrieval
em WestminsterResearch - UK
Resumo:
This paper describes an investigation of changes in image appearance when images are viewed at different image sizes on a high-end LCD device. Two digital image capturing devices of different overall image quality were used for recording identical natural scenes with a variety of pictorial contents. From each capturing device, a total of sixty four captured scenes, including architecture, nature, portraits, still and moving objects and artworks under various illumination conditions and recorded noise level were selected. The test set included some images where camera shake was purposefully introduced. An achromatic version of the image set that contained only lightness information was obtained by processing the captured images in CIELAB space. Rank order experiments were carried out to determine which image attribute(s) were most affected when the displayed image size was altered. These evaluations were carried out for both chromatic and achromatic versions of the stimuli. For the achromatic stimuli, attributes such as contrast, brightness, sharpness and noisiness were rank-ordered by the observers in terms of the degree of change. The same attributes, as well as hue and colourfulness, were investigated for the chromatic versions of the stimuli. Results showed that sharpness and contrast were the two most affected attributes with changes in displayed image size. The ranking of the remaining attributes varied with image content and illumination conditions. Further, experiments were carried out to link original scene content to the attributes that changed mostly with changes in image size.
Resumo:
An evaluation of the change in perceived image contrast with changes in displayed image size was carried out. This was achieved using data from four psychophysical investigations, which employed techniques to match the perceived contrast of displayed images of five different sizes. A total of twenty-four S-shape polynomial functions were created and applied to every original test image to produce images with different contrast levels. The objective contrast related to each function was evaluated from the gradient of the mid-section of the curve (gamma). The manipulation technique took into account published gamma differences that produced a just-noticeable-difference (JND) in perceived contrast. The filters were designed to achieve approximately half a JND, whilst keeping the mean image luminance unaltered. The processed images were then used as test series in a contrast matching experiment. Sixty-four natural scenes, with varying scene content acquired under various illumination conditions, were selected from a larger set captured for the purpose. Results showed that the degree of change in contrast between images of different sizes varied with scene content but was not as important as equivalent perceived changes in sharpness.
Resumo:
A retrieval model describes the transformation of a query into a set of documents. The question is: what drives this transformation? For semantic information retrieval type of models this transformation is driven by the content and structure of the semantic models. In this case, Knowledge Organization Systems (KOSs) are the semantic models that encode the meaning employed for monolingual and cross-language retrieval. The focus of this research is the relationship between these meanings’ representations and their role and potential in augmenting existing retrieval models effectiveness. The proposed approach is unique in explicitly interpreting a semantic reference as a pointer to a concept in the semantic model that activates all its linked neighboring concepts. It is in fact the formalization of the information retrieval model and the integration of knowledge resources from the Linguistic Linked Open Data cloud that is distinctive from other approaches. The preprocessing of the semantic model using Formal Concept Analysis enables the extraction of conceptual spaces (formal contexts)that are based on sub-graphs from the original structure of the semantic model. The types of conceptual spaces built in this case are limited by the KOSs structural relations relevant to retrieval: exact match, broader, narrower, and related. They capture the definitional and relational aspects of the concepts in the semantic model. Also, each formal context is assigned an operational role in the flow of processes of the retrieval system enabling a clear path towards the implementations of monolingual and cross-lingual systems. By following this model’s theoretical description in constructing a retrieval system, evaluation results have shown statistically significant results in both monolingual and bilingual settings when no methods for query expansion were used. The test suite was run on the Cross-Language Evaluation Forum Domain Specific 2004-2006 collection with additional extensions to match the specifics of this model.
Resumo:
Rapid developments in display technologies, digital printing, imaging sensors, image processing and image transmission are providing new possibilities for creating and conveying visual content. In an age in which images and video are ubiquitous and where mobile, satellite, and three-dimensional (3-D) imaging have become ordinary experiences, quantification of the performance of modern imaging systems requires appropriate approaches. At the end of the imaging chain, a human observer must decide whether images and video are of a satisfactory visual quality. Hence the measurement and modeling of perceived image quality is of crucial importance, not only in visual arts and commercial applications but also in scientific and entertainment environments. Advances in our understanding of the human visual system offer new possibilities for creating visually superior imaging systems and promise more accurate modeling of image quality. As a result, there is a profusion of new research on imaging performance and perceived quality.