1 resultado para Compliant building blocks
em WestminsterResearch - UK
Filtro por publicador
- Abertay Research Collections - Abertay University’s repository (1)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Adam Mickiewicz University Repository (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (27)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (19)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (58)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archive of European Integration (4)
- Aston University Research Archive (22)
- Biblioteca de Teses e Dissertações da USP (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (4)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (31)
- Biodiversity Heritage Library, United States (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (57)
- Brock University, Canada (36)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CaltechTHESIS (1)
- CentAUR: Central Archive University of Reading - UK (35)
- Chapman University Digital Commons - CA - USA (6)
- Cochin University of Science & Technology (CUSAT), India (15)
- Coffee Science - Universidade Federal de Lavras (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (57)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (3)
- Dalarna University College Electronic Archive (2)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (2)
- Digital Commons at Florida International University (8)
- Digital Peer Publishing (2)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (85)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (1)
- Düsseldorfer Dokumenten- und Publikationsservice (1)
- eScholarship Repository - University of California (1)
- Galway Mayo Institute of Technology, Ireland (1)
- Georgian Library Association, Georgia (1)
- Glasgow Theses Service (6)
- Institute of Public Health in Ireland, Ireland (13)
- Instituto Politécnico do Porto, Portugal (24)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (39)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Massachusetts Institute of Technology (3)
- National Center for Biotechnology Information - NCBI (6)
- Nottingham eTheses (15)
- Open University Netherlands (1)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (4)
- Publishing Network for Geoscientific & Environmental Data (2)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (5)
- Repositório Aberto da Universidade Aberta de Portugal (1)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (15)
- Repositorio de la Universidad de Cuenca (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositório Institucional da Universidade de Brasília (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (23)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (47)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Scielo Saúde Pública - SP (32)
- Scientific Open-access Literature Archive and Repository (1)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (1)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (4)
- Universidad Politécnica de Madrid (14)
- Universidade do Minho (22)
- Universidade dos Açores - Portugal (1)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (4)
- Universita di Parma (3)
- Universitat de Girona, Spain (4)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (4)
- Université de Lausanne, Switzerland (50)
- Université de Montréal (2)
- Université de Montréal, Canada (21)
- Université Laval Mémoires et thèses électroniques (1)
- University of Michigan (3)
- University of Queensland eSpace - Australia (69)
- University of Southampton, United Kingdom (1)
- University of Washington (5)
- WestminsterResearch - UK (1)
Resumo:
Collecting data via a questionnaire and analyzing them while preserving respondents’ privacy may increase the number of respondents and the truthfulness of their responses. It may also reduce the systematic differences between respondents and non-respondents. In this paper, we propose a privacy-preserving method for collecting and analyzing survey responses using secure multi-party computation (SMC). The method is secure under the semi-honest adversarial model. The proposed method computes a wide variety of statistics. Total and stratified statistical counts are computed using the secure protocols developed in this paper. Then, additional statistics, such as a contingency table, a chi-square test, an odds ratio, and logistic regression, are computed within the R statistical environment using the statistical counts as building blocks. The method was evaluated on a questionnaire dataset of 3,158 respondents sampled for a medical study and simulated questionnaire datasets of up to 50,000 respondents. The computation time for the statistical analyses linearly scales as the number of respondents increases. The results show that the method is efficient and scalable for practical use. It can also be used for other applications in which categorical data are collected.