3 resultados para Compartments

em WestminsterResearch - UK


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sediment is a major sink for heavy metals in river, and poses significant risks not only to river quality but also to aquatic and benthic organisms. At present in the UK, there are no mandatory sediment quality standards. This is partly due to insufficient toxicity data but also due to problems with identification of appropriate sediment monitoring and analytical techniques. The aim of this research was to examine the sampling different river sediment compartments in order to monitor compliance with any future UK sediment environmental quality standards (EQS). The significance of sediment physical and chemical characteristics on sampling and analysis was also determined. The Ravensbourne River, a tributary of the River Thames located in the highly urbanised South Eastern area of London was used for this study. Sediment was collected from the bed using the Van Veer grab, the bank using hand trowel, and from the water column (suspended sediment) using the time integrated suspended tube sampler between the period of July 2010 and December, 2011. The result for the total metal extraction carried out using aqua regia found that there were no significant differences in the metal concentrations retained in the different compartments by the <63μm sediment fraction but there were differences between the 63μm-2mm fractions of the bed and bank. The metal concentration in the bed, bank and suspended sediment exceeded the draft UK sediment quality guidelines. Sequential extraction was also carried out to determine metal speciation in each sediment compartment using the Maiz et al. (1997) and Tessier et al. (1979) methods. The Maiz et al. (1997) found over 80% of the metals in each sediment compartment were not bioavailable, while Tessier et al. (1979) method found most of the metals to be associated with the Fe/Mn and the residual phase. The bed sediment compartment and the <2mm (<63μm + 63μm-2mm) fraction appears to be the most suitable sediment sample for sediment monitoring from this study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When exposed to chronic hypoxia by pathophysiological or environmental causes humans show muscle atrophy, challenging homeostasis and increasing mortality rate. Chronic hypoxia also presents with elevated myostatin peptide, a negative regulator of muscle size. This work induced acute hypoxia in healthy individuals; hypothesizing hypoxia would increase myostatin expression in both muscle and plasma in a concentration- and time-dependent manner. Hypoxia (1 % O2) reduced C2C12 myoblast migration and myotube size in vitro. Myotube atrophy was time-dependent, longer exposures showed greater atrophy. Intracellular myostatin peptide was decreased at every time point measured. Myostatin and downstream signalling pathways in muscle showed a high degree of percentage similarity between mouse and human, when amino acid sequences were directly compared. Healthy males (N = 8) were exposed to 20.9 % O2 or 11.9 % O2 for 2 hours. Following hypoxic exposure myostatin peptide was reduced in muscle but not plasma, relative to control conditions. A second cohort (N = 8) was exposed to 12.5 % O2 for 10 hours. Plasma myostatin was decreased following hypoxia, muscle myostatin trended towards increasing. A third cohort (N = 9; n = 8 lowlander, n = 1 Sherpa) was exposed to 10.7 % or 12.3 % O2 for 2 hours. Plasma myostatin was reduced at both concentrations with no difference between concentrations noted. In response to chronic hypoxia, individuals lose muscle mass. Counter to the hypothesis of an increase in myostatin in both muscle and plasma, here a consistent decrease in plasma myostatin following acute hypoxia is seen. Muscle myostatin shows a variable response, with decreasing intracellular expression seen following a 2 hour hypoxic exposure, and trends towards an increase following 10 hours of hypoxia. Decreases in plasma and muscle myostatin may represent myostatin’s movement towards peripheral compartments in these acute timeframes. Hypoxia alone is capable of altering myostatin in healthy individuals; the effects of hypoxia on myostatin appear to differ between the acute timeframes examined here and chronic exposures in environmental or disease models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction Quantitative and accurate measurements of fat and muscle in the body are important for prevention and diagnosis of diseases related to obesity and muscle degeneration. Manually segmenting muscle and fat compartments in MR body-images is laborious and time-consuming, hindering implementation in large cohorts. In the present study, the feasibility and success-rate of a Dixon-based MR scan followed by an intensity-normalised, non-rigid, multi-atlas based segmentation was investigated in a cohort of 3,000 subjects. Materials and Methods 3,000 participants in the in-depth phenotyping arm of the UK Biobank imaging study underwent a comprehensive MR examination. All subjects were scanned using a 1.5 T MR-scanner with the dual-echo Dixon Vibe protocol, covering neck to knees. Subjects were scanned with six slabs in supine position, without localizer. Automated body composition analysis was performed using the AMRA Profiler™ system, to segment and quantify visceral adipose tissue (VAT), abdominal subcutaneous adipose tissue (ASAT) and thigh muscles. Technical quality assurance was performed and a standard set of acceptance/rejection criteria was established. Descriptive statistics were calculated for all volume measurements and quality assurance metrics. Results Of the 3,000 subjects, 2,995 (99.83%) were analysable for body fat, 2,828 (94.27%) were analysable when body fat and one thigh was included, and 2,775 (92.50%) were fully analysable for body fat and both thigh muscles. Reasons for not being able to analyse datasets were mainly due to missing slabs in the acquisition, or patient positioned so that large parts of the volume was outside of the field-of-view. Discussion and Conclusions In conclusion, this study showed that the rapid UK Biobank MR-protocol was well tolerated by most subjects and sufficiently robust to achieve very high success-rate for body composition analysis. This research has been conducted using the UK Biobank Resource.