4 resultados para Close to Convex Function
em WestminsterResearch - UK
Resumo:
This paper presents the design analysis of novel tunable narrow-band bandpass sigma-delta modulators, which can achieve concurrent multiple noise-shaping for multi-tone input signals. Four different design methodologies based on the noise transfer functions of comb filters, slink filters, multi-notch filters and fractional delay comb filters are applied for the design of these multiple-band sigma-delta modulators. The latter approach utilises conventional comb filters in conjunction with FIR, or allpass IIR fractional delay filters, to deliver the desired nulls for the quantisation noise transfer function. Detailed simulation results show that FIR fractional delay comb filter-based sigma-delta modulators tune accurately to most centre frequencies, but suffer from degraded resolution at frequencies close to Nyquist. However, superior accuracies are obtained from their allpass IIR fractional delay counterpart at the expense of a slight shift in noise-shaping bands at very high frequencies. The merits and drawbacks of each technique for the various sigma-delta topologies are assessed in terms of in-band signal-to-noise ratios, accuracy of tunability and coefficient complexity for ease of implementation.
Resumo:
This paper presents the design analysis of novel tunable narrow-band bandpass sigma-delta modulators, that can achieve concurrent multiple noise-shaping for multi-tone input signals. This approach utilises conventional comb filters in conjunction with FIR, or allpass IIR fractional delay filters, to deliver the desired nulls for the quantisation noise transfer function. Detailed simulation results show that FIR fractional delay comb filter based sigma-delta modulators tune accurately to most centre frequencies, but suffer from degraded resolution at frequencies close to Nyquist. However, superior accuracies are obtained from their allpass IIR fractional delay counterpart at the expense of a slight shift in noise-shaping bands at very high frequencies.
Resumo:
This work describes how genetic programming is applied to evolving controllers for the minimum time swing up and inverted balance tasks of the continuous state and action: limited torque acrobot. The best swing-up controller is able to swing the acrobot up to a position very close to the inverted ‘handstand’ position in a very short time, shorter than that of Coulom (2004), who applied the same constraints on the applied torque values, and to take only slightly longer than the approach by Lai et al. (2009) where far larger torque values were allowed. The best balance controller is able to balance the acrobot in the inverted position when starting from the balance position for the length of time used in the fitness function in all runs; furthermore, 47 out of 50 of the runs evolve controllers able to maintain the balance position for an extended period, an improvement on the balance controllers generated by Dracopoulos and Nichols (2012), which this paper is extended from. The most successful balance controller is also able to balance the acrobot when starting from a small offset from the balance position for this extended period.
Resumo:
Objectives To investigate the contribution of direct electron transfer mechanisms to electricity production in microbial fuel cells by physically retaining Shewanella oneidensis cells close to or away from the anode electrode. Results A maximum power output of 114 ± 6 mWm−2 was obtained when cells were retained close to the anode using a dialysis membrane. This was 3.5 times more than when the cells were separated away from the anode. Without the membrane the maximum power output was 129 ± 6 mWm−2. The direct mechanisms of electron transfer contributed significantly to overall electron transfer from S. oneidensis to electrodes, a result that was corroborated by another experiment where S. oneidensis cells were entrapped in alginate gels. Conclusion S. oneidensis transfers electrons primarily by direct electron transfer as opposed to mediated electron transfer.