3 resultados para Calorimetry, Differential Scanning

em WestminsterResearch - UK


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Today more than 99% of plastics are petroleum-based because of the availability and cost of the raw material. The durability of disposed plastics contributes to the environmental problems as waste and their persistence in the environment causes deleterious effects on the ecosystem. Environmental pollution awareness and the demand for green technology have drawn considerable attention of both academia and industry into biodegradable polymers. In this regard green chemistry technology has the potential to provide solution to this issue. Enzymatic grafting has recently been the focus of green chemistry technologies due to the growing environmental concerns, legal restrictions, and increasing availability of scientific knowledge. Over the last several years, research covering various applications of robust enzymes like laccases and lipases has been increased rapidly, particularly in the field of polymer science, to graft multi-functional materials of interest. In principle, enzyme-assisted grafting may modify/impart a variety of functionalities to the grafted composites which individual materials fail to demonstrate on their own. The modified polymers through grafting have a bright future and their development is practically boundless. In the present study series of graft composites with poly(3-hydroxybutyrate) (P(3HB) as side chain and cellulose as a backbone polymer were successfully synthesised by introducing enzymatic grafting technique where laccase and lipase were used as model catalysts [1-3]. Subsequently, the resulting composites were removed from the casting surface under ambient environment and characterised by Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and X-ray diffraction (XRD) in detail. Moreover, the thermo-mechanical behaviours of the grafted composites were investigated by differential scanning calorimetry (DSC) and dynamic mechanical analyser (DMA) measurements, respectively. In addition, hydrophobic and hydrophilic characteristics of the grafted polymers were studied through drop contour analysis using water contact angle (WCA). In comparison to the individual counterparts improvement was observed in the thermo- mechanical properties of the composites to varied extent. The tensile strength, elongation at break, and Young’s modulus values of the composites reached their highest levels in comparison to the films prepared with pure P(3HB) only which was too fragile to measure any of the above said characteristics. Interestingly, untreated P(3HB) was hydrophobic in nature and after lipase treatment P(3HB) and P(3HB)-EC-based graft composite attained higher level of hydrophilicity. This is a desired characteristic that enhances the biocompatibility of the materials for proper cell adhesion and proliferation therefore suggesting potential candidates for tissue engineering/bio-medical type applications [3]. The present research will be a first step in the biopolymer modification. To date no report has been found in literature explaining the laccase/lipase assisted grafting of P(3HB) [1-3]. The newly grafted composites exhibit unique functionalities with wider range of potential applications in bio-plastics, pharmaceutical, and cosmetics industries, tissue engineering, and biosensors. [1] H.M.N. Iqbal, G. Kyazze, T. Tron and T. Keshavarz, Cellulose 21, 3613-3621 (2014). [2] H.M.N. Iqbal, G. Kyazze, T. Tron and T. Keshavarz, Carbohydrate Polymers 113, 131-137 (2014). [3] H.M.N. Iqbal, G. Kyazze, T. Tron and T. Keshavarz, Polymer Chemistry In-Press, DOI: 10.1039/C4PY0 0857J (2014).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the present study, a novel enzyme-based methodology for grafting Polyhydroxyalkanoates (PHAs) onto the ethyl cellulose (EC) as a backbone polymer was developed. Laccase assisted copolymerization was carried out under mild and eco-friendly reaction conditions. The resulting homogeneous composite membranes were characterized by Fourier-transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and Atomic Force Microscopy (AFM). The FTIR spectra of pure PHAs and PHAs containing graft composites (PHAs-g-EC) showed their strong characteristic bands at 1721 cm1, 1651 cm-1 and 1603 cm-1 respectively. Other accompanying bands in the range of 900-1300 cm-1 correspond to C=O vibration and C-O-C bond stretching, which could be contributed from PHAs and EC, respectively. The high intensity of the 3358 cm-1 band in the graft composite may have corresponded to the degradation of the carboxylic group from PHAs and also showed an increase of hydrogen-bonded groups at that distinct band region. The morphology was examined by SEM, which showed the well dispersed PHAs crystals in the backbone polymer of EC. XRD pattern for PHAs showed distinct peaks at 2-Theta values of 28o, 32o, 34o, 39o, 46o, 57o, 64o, 78o and 84o that represent the crystalline nature of PHAs. In comparison with those of neat PHAs, the degree of crystallinity for PHAs-g-EC decreased and this reduction is mainly because of the new cross-linking of PHAs within the EC backbone that changes the morphology and destroys the crystallites. Improved mechanical properties were observed for the PHAs-g-EC as compared to the individual components due to the impregnation of EC as reinforcement into the PHAs matrix. Improved mechanical strength enhanced thermal properties, along with low crystallinity of the present PHAs-g-EC suggesting its potential for various industrial and bio-medical applications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Medicated shellac nanofibers providing colon-specific sustained release were fabricated using coaxial electrospinning. A solution of 7.5 g shellac and 1.5 g of ferulic acid (FA) in 10 mL ethanol was used as the core fluid, and a mixture of ethanol and N,N-dimethylformamide (8/10 v/v) as the shell. The presence of the shell fluid was required to prevent frequent clogging of the spinneret. The diameters of the fibers (D) can be manipulated by varying the ratio of shell to core flow rates (F), according to the equation D = 0.52F−0.19. Scanning electron microscopy images revealed that fibers prepared with F values of 0.1 and 0.25 had linear morphologies with smooth surfaces, but when the shell fluid flow rate was increased to 0.5 the fiber integrity was compromised. FA was found to be amorphously distributed in the fibers on the basis of X-ray diffraction and differential scanning calorimetry results. This can be attributed to good compatibility between the drug and carrier: IR spectra indicated the presence of hydrogen bonds between the two. In vitro dissolution tests demonstrated that there was minimal FA release at pH 2.0, and sustained release in a neutral dissolution medium. The latter occurred through an erosion mechanism. During the dissolution processes, the shellac fibers were gradually converted into nanoparticles as the FA was freed into solution, and ultimately completely dissolved.