2 resultados para CATEGORICAL-DATA ANALYSIS
em WestminsterResearch - UK
Filtro por publicador
- Aberdeen University (1)
- Aberystwyth University Repository - Reino Unido (6)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Academic Research Repository at Institute of Developing Economies (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (11)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (8)
- Aquatic Commons (5)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (4)
- Aston University Research Archive (37)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (19)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (17)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (4)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (36)
- Brock University, Canada (3)
- Bucknell University Digital Commons - Pensilvania - USA (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (10)
- CaltechTHESIS (4)
- Cambridge University Engineering Department Publications Database (17)
- CentAUR: Central Archive University of Reading - UK (34)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (8)
- Cochin University of Science & Technology (CUSAT), India (4)
- Collection Of Biostatistics Research Archive (25)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (4)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (3)
- CUNY Academic Works (4)
- Dalarna University College Electronic Archive (6)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (4)
- Digital Commons - Michigan Tech (4)
- Digital Commons - Montana Tech (1)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons @ Winthrop University (4)
- Digital Commons at Florida International University (13)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (25)
- DigitalCommons@University of Nebraska - Lincoln (1)
- DRUM (Digital Repository at the University of Maryland) (3)
- Duke University (6)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (9)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (8)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (2)
- Indian Institute of Science - Bangalore - Índia (11)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico do Porto, Portugal (7)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (1)
- Nottingham eTheses (1)
- Portal de Revistas Científicas Complutenses - Espanha (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (42)
- Queensland University of Technology - ePrints Archive (188)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Aberto da Universidade Aberta de Portugal (1)
- Repositório Científico da Escola Superior de Enfermagem de Coimbra (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (6)
- Repositório Institucional da Universidade de Aveiro - Portugal (3)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (40)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (4)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- Scientific Open-access Literature Archive and Repository (2)
- Universidad de Alicante (5)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (9)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (12)
- Universita di Parma (1)
- Universitat de Girona, Spain (41)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (4)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (4)
- University of Canberra Research Repository - Australia (2)
- University of Michigan (37)
- University of Queensland eSpace - Australia (11)
- University of Southampton, United Kingdom (7)
- University of Washington (7)
- WestminsterResearch - UK (2)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
Collecting data via a questionnaire and analyzing them while preserving respondents’ privacy may increase the number of respondents and the truthfulness of their responses. It may also reduce the systematic differences between respondents and non-respondents. In this paper, we propose a privacy-preserving method for collecting and analyzing survey responses using secure multi-party computation (SMC). The method is secure under the semi-honest adversarial model. The proposed method computes a wide variety of statistics. Total and stratified statistical counts are computed using the secure protocols developed in this paper. Then, additional statistics, such as a contingency table, a chi-square test, an odds ratio, and logistic regression, are computed within the R statistical environment using the statistical counts as building blocks. The method was evaluated on a questionnaire dataset of 3,158 respondents sampled for a medical study and simulated questionnaire datasets of up to 50,000 respondents. The computation time for the statistical analyses linearly scales as the number of respondents increases. The results show that the method is efficient and scalable for practical use. It can also be used for other applications in which categorical data are collected.