5 resultados para Business processes
em WestminsterResearch - UK
Resumo:
Simulating the efficiency of business processes could reveal crucial bottlenecks for manufacturing companies and could lead to significant optimizations resulting in decreased time to market, more efficient resource utilization, and larger profit. While such business optimization software is widely utilized by larger companies, SMEs typically do not have the required expertise and resources to efficiently exploit these advantages. The aim of this work is to explore how simulation software vendors and consultancies can extend their portfolio to SMEs by providing business process optimization based on a cloud computing platform. By executing simulation runs on the cloud, software vendors and associated business consultancies can get access to large computing power and data storage capacity on demand, run large simulation scenarios on behalf of their clients, analyze simulation results, and advise their clients regarding process optimization. The solution is mutually beneficial for both vendor/consultant and the end-user SME. End-user companies will only pay for the service without requiring large upfront costs for software licenses and expensive hardware. Software vendors can extend their business towards the SME market with potentially huge benefits.
Resumo:
Existing Workflow Management Systems (WFMSs) follow a pragmatic approach. They often use a proprietary modelling language with an intuitive graphical layout. However the underlying semantics lack a formal foundation. As a consequence, analysis issues, such as proving correctness i.e. soundness and completeness, and reliable execution are not supported at design level. This project will be using an applied ontology approach by formally defining key terms such as process, sub-process, action/task based on formal temporal theory. Current business process modelling (BPM) standards such as Business Process Modelling Notation (BPMN) and Unified Modelling Language (UML) Activity Diagram (AD) model their constructs with no logical basis. This investigation will contribute to the research and industry by providing a framework that will provide grounding for BPM to reason and represent a correct business process (BP). This is missing in the current BPM domain, and may result in reduction of the design costs and avert the burden of redundant terms used by the current standards. A graphical tool will be introduced which will implement the formal ontology defined in the framework. This new tool can be used both as a modelling tool and at the same time will serve the purpose of validating the model. This research will also fill the existing gap by providing a unified graphical representation to represent a BP in a logically consistent manner for the mainstream modelling standards in the fields of business and IT. A case study will be conducted to analyse a catalogue of existing ‘patient pathways’ i.e. processes, of King’s College Hospital NHS Trust including current performance statistics. Following the application of the framework, a mapping will be conducted, and new performance statistics will be collected. A cost/benefits analysis report will be produced comparing the results of the two approaches.
Resumo:
Existing Workflow Management Systems (WFMSs) follow a pragmatic approach. They often use a proprietary modelling language with an intuitive graphical layout. However the underlying semantics lack a formal foundation. As a consequence, analysis issues, such as proving correctness i.e. soundness and completeness, and reliable execution are not supported at design level. This project will be using an applied ontology approach by formally defining key terms such as process, sub-process, action/task based on formal temporal theory. Current business process modelling (BPM) standards such as Business Process Modelling Notation (BPMN) and Unified Modelling Language (UML) Activity Diagram (AD) model their constructs with no logical basis. This investigation will contribute to the research and industry by providing a framework that will provide grounding for BPM to reason and represent a correct business process (BP). This is missing in the current BPM domain, and may result in reduction of the design costs and avert the burden of redundant terms used by the current standards. A graphical tool will be introduced which will implement the formal ontology defined in the framework. This new tool can be used both as a modelling tool and at the same time will serve the purpose of validating the model. This research will also fill the existing gap by providing a unified graphical representation to represent a BP in a logically consistent manner for the mainstream modelling standards in the fields of business and IT. A case study will be conducted to analyse a catalogue of existing ‘patient pathways’ i.e. processes, of King’s College Hospital NHS Trust including current performance statistics. Following the application of the framework, a mapping will be conducted, and new performance statistics will be collected. A cost/benefits analysis report will be produced comparing the results of the two approaches.
Resumo:
This report presents the main findings from a project entitled ‘Evaluating the Business Impact of Social Science', commissioned by the Economic and Social Research Council (ESRC) and undertaken by a team of researchers from the University of Hull. In brief, the project involved an examination of the processes through which social science research and related activities impact upon business (defined broadly to incorporate large and small private sector businesses as well as social enterprises, but excluding public sector organisations) in relation to three of the UK’s leading business/management schools that have received significant amounts of ESRC funding in recent years: Cardiff Business School, Lancaster University Management School, and Warwick Business School
Resumo:
As identified by Griffin (1997) and Kahn (2012), manufacturing organisations typically improve their market position by accelerating their product development (PD) cycles. One method for achieving this is to reduce the time taken to design, test and validate new products, so that they can reach the end customer before competition. This paper adds to existing research on PD testing procedures by reporting on an exploratory investigation carried out in a UK-based manufacturing plant. We explore the organisational and managerial factors that contribute to the time spent on testing of new products during development. The investigation consisted of three sections, viz. observations and process modelling, utilisation metrics and a questionnaire-based investigation, from which a proposed framework to improve and reduce the PD time cycle is presented. This research focuses specifically on the improvement of the utilisation of product testing facilities and the links to its main internal stakeholders - PD engineers.