3 resultados para Biologic dressings
em WestminsterResearch - UK
Resumo:
The management of wound bioburden has previously been evaluated using various antimicrobial wound dressings on bacterial pathogens isolated from various wounds. In this present study, the antimicrobial effect of silver-impregnated dressings (Acticoat and Silvercel) and honey-impregnated dressing (Medihoney™ Apinate) on both planktonic bacteria and quasi-biofilms by Staphylococcus aureus and Proteus mirabilis were assessed using a 6-well plate and standard agar technique. In the 6-well plate assay, a bacterial suspension of 108 colony forming unit (CFU)/mL was inoculated on each dressing in excess Luria-Bertani broth and incubated at 35 – 37°C for 30 and 60 minutes and 24 hours. After each incubation time, bacteria were recovered in sodium thioglycolate solution (STS) and the CFU/mL determined on LB agar. Dressings were cut into circular shapes (2cm diameter and placed on Mueller Hinton agar plates pre-inoculated with bacterial suspensions to determine their zones of inhibition (ZOI) after 24 hours incubation. None of the dressings was effective to significantly inhibit bacterial growth or biofilm formation at all the times tested. Acticoat and Medihoney™ Apinate produced ZOIs between 1.5 – 15 mm against both Staphylococcus aureus and Proteus mirabilis. It is possible that, dressings augmented with antibiotics can significantly reduce quasi-biofilms on standard agar.
Resumo:
The impact of biofilm in the effective control of wound microbiome is an ongoing dilemma which has seen the use of different treatment strategies. The effects of wound dressings and antibiotics on both planktonic bacteria and biofilms have been separately evaluated in previous studies. In this current study, the combined antimicrobial effects of some selected wound dressings (silver-impregnated: Acticoat and Silvercel; and honey-impregnated: Medihoney™ Apinate) and antibiotics (ceftazdime and levofloxacin) on Klebsiella pneumoniae and Proteus mirabilis in their quasi-biofilm state were assessed using zone of inhibition (ZOI) test. Before the addition of the wound dressings, bacterial suspension of 108 colony forming units per mL and different concentrations of ceftazidime and levofloxacin (256, 512, 1024 and 5120µg/mL) of a final volume of 1mL were inoculated on Mueller Hinton agar and allowed to dry. Wound dressings cut into circular shapes (2cm diameter) were aseptically placed on the agar plates and incubated at 35 – 37°C for 24 hours. ZOIs associated with Acticoat, Silvercel and Medihoney™ Apinate dressings were compared with that of Atrauman (non-medicated control) dressing. All three dressings showed significant (p < 0.05) biofilm-inhibiting activity against both bacteria at antibiotic concentrations of 1024 and 5120µg/mL with ZOI between 17.5 and 35mm.
Resumo:
We have developed novel composites by grafting caffeic acid (CA) onto the P(3HB)-EC based material and laccase from Trametes versicolor was used for grafting purposes. The resulting composites were designated as CA-g-P(3HB)-EC i.e., P(3HB)-EC (control), 5CA-g-P(3HB)-EC, 10CA-g-P(3HB)-EC, 15CA-g-P(3HB)-EC and 20CA-g-P(3HB)-EC. An FT-IR (Fourier-transform infrared spectroscopy) was used to examine the functional and elemental groups of the control and laccase-assisted graft composites. Evidently, 15CA-g-P(3HB)-EC composite exhibited resilient antibacterial activity against Gram-positive and Gram-negative bacterial strains, respectively. Moreover, a significant level of biocompatibility and biodegradability of the CA-g-P(3HB)-EC composites was also achieved with the human keratinocytes-like HaCaT cells and soil burial evaluation, respectively. In conclusion, the newly developed novel composites with multi characteristics could well represent the new wave of biomaterials for medical applications, and more specifically have promising future in the infection free would dressings, burn and/or skin regeneration field due to their sophisticated characteristics.