3 resultados para Averaging Theorem
em WestminsterResearch - UK
Resumo:
Summary form only given, as follows. In Vol. 12, no. 3 (Summer 2007), page 9, bottom of the left column, in 'Computer Architecture and Amdahl??s Law' by Gene Amdahl, the claim about invalidating Amdahl??s Law in 1988 came from a team at Sandia National Laboratories, and not Los Alamos. The correct text should read: "Several years later I was informed of a proof that Amdahl's Law was invalidated by someone at Sandia National Laboratories, where a number of computers interconnected as an Ncube by communication lines, but with each computer also connected to I/O devices for loading the operating system, initial data, and results." On page 20 of the same issue, in the second sentence of the diagram explanation note by Justin Rattner, the percentage figures for the sequential and the system coordination parts of the workload were interchanged. The correct version of this sentence should read: "assuming a fixed sized problem, Amdahl speculated that most programs would require at least 10% of the computation to be sequential (only one instruction executing at a time), with overhead due to interprocessor coordination averaging 25%."
Resumo:
In proposing theories of how we should design and specify networks of processes it is necessary to show that the semantics of any language we use to write down the intended behaviours of a system has several qualities. First in that the meaning of what is written on the page reflects the intention of the designer; second that there are no unexpected behaviours that might arise in a specified system that are hidden from the unsuspecting specifier; and third that the intention for the design of the behaviour of a network of processes can be communicated clearly and intuitively to others. In order to achieve this we have developed a variant of CSP, called CSPt, designed to solve the problems of termination of parallel processes present in the original formulation of CSP. In CSPt we introduced three parallel operators, each with a different kind of termination semantics, which we call synchronous, asynchronous and race. These operators provide specifiers with an expressive and flexible tool kit to define the intended behaviour of a system in such a way that unexpected or unwanted behaviours are guaranteed not to take place. In this paper we extend out analysis of CSPt and introduce the notion of an alphabet diagram that illustrates the different categories of events that can arise in the parallel composition of processes. These alphabet diagrams are then used to analyse networks of three processes in parallel with the aim of identifying sufficient constraints to ensure associativity of their parallel composition. Having achieved this we then proceed to prove associativity laws for the three parallel operators of CSPt. Next, we illustrate how to design and construct a network of three processes that satisfy the associativity law, using the associativity theorem and alphabet diagrams. Finally, we outline how this could be achieved for more general networks of processes.
Resumo:
In proposing theories of how we should design and specify networks of processes it is necessary to show that the semantics of any language we use to write down the intended behaviours of a system has several qualities. First in that the meaning of what is written on the page reflects the intention of the designer; second that there are no unexpected behaviours that might arise in a specified system that are hidden from the unsuspecting specifier; and third that the intention for the design of the behaviour of a network of processes can be communicated clearly and intuitively to others. In order to achieve this we have developed a variant of CSP, called CSPt, designed to solve the problems of termination of parallel processes present in the original formulation of CSP. In CSPt we introduced three parallel operators, each with a different kind of termination semantics, which we call synchronous, asynchronous and race. These operators provide specifiers with an expressive and flexible tool kit to define the intended behaviour of a system in such a way that unexpected or unwanted behaviours are guaranteed not to take place. In this paper we extend out analysis of CSPt and introduce the notion of an alphabet diagram that illustrates the different categories of events that can arise in the parallel composition of processes. These alphabet diagrams are then used to analyse networks of three processes in parallel with the aim of identifying sufficient constraints to ensure associativity of their parallel composition. Having achieved this we then proceed to prove associativity laws for the three parallel operators of CSPt. Next, we illustrate how to design and construct a network of three processes that satisfy the associativity law, using the associativity theorem and alphabet diagrams. Finally, we outline how this could be achieved for more general networks of processes.