4 resultados para Autophagic Cell Death

em WestminsterResearch - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

ntroduction: Osteoarthritis (OA) is a degenerative joint disease affecting more than 8.5 million people in the UK. Disruption in the catabolic and anabolic balance, with the catabolic cytokine Interleukin 1 beta (IL-1β) being involved in the initiation and progression of OA (1). Melanocortin peptides (α-MSH and D[Trp8]-γ-MSH) exert their anti-inflammatory effects via activation of melanocortin receptors (MC), with both MC1 and MC3 being identified as promising candidates as novel targets for OA (2). This study aims to assess the chondroprotective and anti-inflammatory effects of the pan melanocortin receptor agonist α-MSH and MC3 agonist D[Trp8]-γ-MSH following IL-1β chondrocyte stimulation. Methods: RT-PCR/ Western Blot: Human C-20/A4 chondrocytic cell-line were cultured in 6 well plates (1x106 cells/well) and harvested to determine MC and IL-1β expression by RT-PCR, and Western Blot. Cell-Culture: Cells were cultured in 96 well plates (1x106 cells/well) and stimulated with H2O2 (0.3%), TNF-α (60 pg/ml) or IL-1β (0-5000pg/ml) for 0-72h and cell viability determined. Drug Treatment: In separate experiments cells were pre-treated with 3 μg/ml α-MSH (Sigma-Aldrich Inc. Poole, UK), or D[Trp8]-γ-MSH (Phoenix Pharmaceuticals, Karlsrhue, Germany) (all dissolved in PBS) for 30 minutes prior to IL-1β (5000pg/ml) stimulation for 6-24h. Analysis: Cell viability was determined by using the three cell viability assays; Alamar Blue, MTT and the Neutral Red (NR) assay. Cell-free supernatants were collected and analysed for Interleukin -6 (IL-6) and IL-8 release by ELISA. Data expressed as Mean ± SD of n=4-8 determination in quadruplicate. *p≤ 0.05 vs. control. Results: Both RT-PCR, and Western Blot showed MC1 and MC3 expression on C-20/A4 cells. Cell viability analysis: IL-1β stimulation led to a maximal cell death of 35% at 6h (Alamar Blue), and 40% and 75% with MTT and Neutral Red respectively at 24h compared to control. The three cell viability assays have different cellular uptake pathways, which accounts for the variations observed in cell viability in response to the concentration of IL-1β, and time. Cytokine analysis by ELISA: IL-1β (5000pg/ml) stimulation for 6 and 24h showed maximal IL-6 production 292.3 ±3.8 and 275.5 ±5.0 respectively, and IL-8 production 353.3 ±2.6 and 598.3 ±8.6 respectively. Pre-treatment of cells with α-MSH and D[Trp8]-γ-MSH caused significant reductions in both IL-6 and IL-8 respectively following IL-1β stimulation at 6h. Conclusion: MC1/3 are expressed on C-20/A4 cells, activation by melanocortin peptides led to an inhibition of IL-1β induced cell death and pro-inflammatory cytokine release.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The mammalian midbrain dopaminergic systems arising in the substantia nigra pars compacta (SNc) and ventral tegmental area (VTA) are critical for coping behaviours and are implicated in neuropsychiatric disorders where early life challenges comprise significant risk factors. Here, we aimed to advance our hypothesis that glucocorticoids (GCs), recognised key players in neurobiological programming, target development within these systems, with a novel focus on the astrocytic population. Mice received antenatal GC treatment (AGT) by including the synthetic GC, dexamethasone, in the mothers' drinking water on gestational days 16-19; controls received normal drinking water. Analyses of regional shapes and volumes of the adult SNc and VTA demonstrated that AGT induced long-term, dose-dependent, structural changes that were accompanied by profound effects on astrocytes (doubling/tripling of numbers and/or density). Additionally, AGT induced long-term changes in the population size and distribution of SNc/VTA dopaminergic neurons, confirming and extending our previous observations made in rats. Furthermore, glial/neuronal structural remodelling was sexually dimorphic and depended on the AGT dose and sub-region of the SNc/VTA. Investigations within the neonatal brain revealed that these long-term organisational effects of AGT depend, at least in part, on targeting perinatal processes that determine astrocyte density and programmed cell death in dopaminergic neurons. Collectively, our characterisation of enduring, AGT-induced, sex-specific cytoarchitectural disturbances suggests novel mechanistic links for the strong association between early environmental challenge (inappropriate exposure to excess GCs) and vulnerability to developing aberrant behaviours in later life, with translational implications for dopamine-associated disorders (such as schizophrenia, ADHD, autism, depression), which typically show a sex bias

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Spinal cord regenerative ability is lost with development, but the mechanisms underlying this loss are still poorly understood. In chick embryos, effective regeneration does not occur after E13, when spinal cord injury induces extensive apoptotic response and tissue damage. As initial experiments showed that treatment with a calcium chelator after spinal cord injury reduced apoptosis and cavitation, we hypothesized that developmentally regulated mediators of calcium-dependent processes in secondary injury response may contribute to loss of regenerative ability. To this purpose we screened for such changes in chick spinal cords at stages of development permissive (E11) and non-permissive (E15) for regeneration. Among the developmentally regulated calcium-dependent proteins identified was PAD3, a member of the peptidylarginine deiminase (PAD) enzyme family that converts protein arginine residues to citrulline, a process known as deimination or citrullination. This post-translational modification has not been previously associated with response to injury. Following injury, PAD3 up-regulation was greater in spinal cords injured at E15 than at E11. Consistent with these differences in gene expression, deimination was more extensive at the non-regenerating stage, E15, both in the gray and white matter. As deimination paralleled the extent of apoptosis, we investigated the effect of blocking PAD activity on cell death and deiminated-histone 3, one of the PAD targets we identified by mass-spectrometry analysis of spinal cord deiminated proteins. Treatment with the PAD inhibitor, Cl-amidine, reduced the abundance of deiminated-histone 3, consistent with inhibition of PAD activity, and significantly reduced apoptosis and tissue loss following injury at E15. Altogether, our findings identify PADs and deimination as developmentally regulated modulators of secondary injury response, and suggest that PADs might be valuable therapeutic targets for spinal cord injury.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Acetate is a short chain fatty acid produced as a result of fermentation of ingested fibers by the gut microbiota. While it has been shown to reduce cell proliferation in some cancer cell lines1,2, more recent studies on liver3 and brain4 tumours suggest that acetate may actually promote tumour growth. Acetate in the cell is normally converted into acetyl-coA by two enzymes and metabolized; mitochondrial (ACSS1) and cytosolic (ACSS2) acetyl-coA synthetase. In the mitochondria acetyl-coA is utilized in the TCA cycle. In the cytosol it is utilized in lipid synthesis. In this study, the effect of acetate treatment on the growth of HT29 colon cancer cell line and its mechanism of action was assessed. HT29 human colorectal adenocarcinoma cells were treated with 10mM NaAc and cell viability, cellular bioenergetics and gene expression were investigated. Cell viability was assessed 24 hours after treatment using an MTT assay (Sigma, UK, n=8). Cellular oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) was measured by XFe Analyzer (Seahorse Bioscience, USA). After a baseline reading cells were treated and OCR and ECAR measurements were observed for 18 hours (n=4). Total mRNA was isolated 24 hours after treatment using RNeasy kit (Qiagen, USA). Quantitative PCR reactions were performed using Taqman gene expression assays and Taqman Universal PCR Master Mix (ThermoFisher Scientific, UK) on Applied Biosystems 7500 Fast Real-Time PCR System (Life Technologies, USA) and analysed using ΔΔCt method (n=3). Acetate treatment led to a significant reduction in cell viability (15.9%, Figure 1). OCR, an indicator of oxidative phosphorylation, was significantly increased (p<0.0001) while ECAR, an indicator of glycolysis, was significantly reduced (p<0.0001, Figure 2). Gene expression of ACSS1 was increased by 1.7 fold of control (p=0.07) and ACSS2 expression was reduced to 0.6 fold of control (p=0.06, Figure 3). In conclusion, in colon cancer cells acetate supplementation induces cell death and increases oxidative capacity. These changes together with the trending decrease in ACSS2 expression suggest suppression of lipid synthesis pathways. We hypothesize that the reduced tumor growth by acetate is a consequence of the suppression of ACSS2 and lipid synthesis, both effects reported previously to reduce tumor growth3–5. These effects clearly warrant further investigation.