2 resultados para Artificial Information Models
em WestminsterResearch - UK
Resumo:
A retrieval model describes the transformation of a query into a set of documents. The question is: what drives this transformation? For semantic information retrieval type of models this transformation is driven by the content and structure of the semantic models. In this case, Knowledge Organization Systems (KOSs) are the semantic models that encode the meaning employed for monolingual and cross-language retrieval. The focus of this research is the relationship between these meanings’ representations and their role and potential in augmenting existing retrieval models effectiveness. The proposed approach is unique in explicitly interpreting a semantic reference as a pointer to a concept in the semantic model that activates all its linked neighboring concepts. It is in fact the formalization of the information retrieval model and the integration of knowledge resources from the Linguistic Linked Open Data cloud that is distinctive from other approaches. The preprocessing of the semantic model using Formal Concept Analysis enables the extraction of conceptual spaces (formal contexts)that are based on sub-graphs from the original structure of the semantic model. The types of conceptual spaces built in this case are limited by the KOSs structural relations relevant to retrieval: exact match, broader, narrower, and related. They capture the definitional and relational aspects of the concepts in the semantic model. Also, each formal context is assigned an operational role in the flow of processes of the retrieval system enabling a clear path towards the implementations of monolingual and cross-lingual systems. By following this model’s theoretical description in constructing a retrieval system, evaluation results have shown statistically significant results in both monolingual and bilingual settings when no methods for query expansion were used. The test suite was run on the Cross-Language Evaluation Forum Domain Specific 2004-2006 collection with additional extensions to match the specifics of this model.
Resumo:
Previous research on the prediction of fiscal aggregates has shown evidence that simple autoregressive models often provide better forecasts of fiscal variables than multivariate specifications. We argue that the multivariate models considered by previous studies are small-scale, probably burdened by overparameterization, and not robust to structural changes. Bayesian Vector Autoregressions (BVARs), on the other hand, allow the information contained in a large data set to be summarized efficiently, and can also allow for time variation in both the coefficients and the volatilities. In this paper we explore the performance of BVARs with constant and drifting coefficients for forecasting key fiscal variables such as government revenues, expenditures, and interest payments on the outstanding debt. We focus on both point and density forecasting, as assessments of a country’s fiscal stability and overall credit risk should typically be based on the specification of a whole probability distribution for the future state of the economy. Using data from the US and the largest European countries, we show that both the adoption of a large system and the introduction of time variation help in forecasting, with the former playing a relatively more important role in point forecasting, and the latter being more important for density forecasting.