4 resultados para Angola Benguela Front

em WestminsterResearch - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phase and gain mismatches between the I and Q analog signal processing paths of a quadrature receiver are responsible for the generation of image signals which limit the dynamic range of a practical receiver. In this paper we analyse the effects these mismatches and propose a low-complexity blind adaptive algorithm to minimize this problem. The proposed solution is based on two, 2-tap adaptive filters, arranged in Adaptive Noise Canceller (ANC) set-up. The algorithm lends itself to efficient real-time implementation with minimal increase in modulator complexity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

I and Q Channel phase and gain misniatches are of great concern in communications receiver design. In this paper we analyse the effects of I and Q channel mismatches and propose a low-complexity blind adaptive algorithm to minimize this problem. The proposed solution consists of two, 2-tap adaptive filters, arranged in Adaptive Noise Canceller (ANC) set-up, with the output of one cross-fed to the input of the other. The system works as a de-correlator eliminating I and Q mismatch errors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the design and implementation of a dual–tracking Radio Frequency (RF) front–end for a multi–constellation Global Navigation Satellite Systems (GNSS) receiver. The RF frond–end is based on the direct RF conversion architecture, which employs sub–Nyquist sampling (also known as subsampling) at RF. The dual–tracking RF front–end is composed of a few RF components that are duplicated to form the two RF channels. Employing a dual–channel Analogue–to–Digital Converter (ADC) enables synchronisation of the RF channels and minimises the errors resulting from the differences in the satellite clocks and the propagation delay between the two RF channels. The digitised GNSS signals are processed by two separate acquisition and tracking engines that are driven by the front–end’s master clock. This setup provides two synchronised receivers that are integrated onto one piece of hardware. The hardware is intended to be used for research applications such as multipath mitigation, scintillation assessment, and advanced satellite clock and spatial frame transformation modelling.