5 resultados para Anaerobic Mineralisable N
em WestminsterResearch - UK
Resumo:
The decolourisation of acid orange 7 (AO7) (C.I.15510) through co-metabolism in a microbial fuel cell by Shewanella oneidensis strain 14063 was investigated with respect to the kinetics of decolourisation, extent of degradation and toxicity of biotransformation products. Rapid decolourisation of AO7 (>98% within 30 h) was achieved at all tested dye concentrations with concomitant power production. The aromatic amine degradation products were recalcitrant under tested conditions. The first-order kinetic constant of decolourisation (k) decreased from 0.709 ± 0.05 h−1 to 0.05 ± 0.01 h−1 (co-substrate – pyruvate) when the dye concentration was raised from 35 mg l−1 to 350 mg l−1. The use of unrefined co-substrates such as rapeseed cake, corn-steep liquor and molasses also indicated comparable or better AO7 decolourisation kinetic constant values. The fully decolourised solutions indicated increased toxicity as the initial AO7 concentration was increased. This work highlights the possibility of using microbial fuel cells to achieve high kinetic rates of AO7 decolourisation through co-metabolism with concomitant electricity production and could potentially be utilised as the initial step of a two stage anaerobic/aerobic process for azo dye biotreatment.
Resumo:
A recent study characterizing bacteriophage populations within human caecal effluent demonstrated the presence of numerous Podoviridae, Siphoviridae and Myoviridae within this material (Hoyles et al., 2014, Res Microbiol 165, 803–812). Further to this work, anaerobic bacteria were isolated on fastidious anaerobe agar from the caecal effluent of a healthy 31-year-old woman. Ten colonies were selected at random, streaked to purity and screened against the remaining caecal effluent (filter-sterilized, 0.45 μm pore size) in an attempt to isolate lytic bacteriophages. Bacteriophages within the effluent [2×105 ± 2.65×103 (n=3) pfu/ml] were active against five of the isolates, all identified by 16S rRNA gene sequence analysis as Klebsiella pneumoniae. One of the five isolates, L4-FAA5, was characterized further and found to be K. pneumoniae subsp. pneumoniae capsule type K2 rmpA+, and was used to propagate a bacteriophage (which we named KLPN1) to purity. Bacteriophage KLPN1 was a member of the Siphoviridae with a rosette-like tail tip and exhibited depolymerase activity, demonstrated by the formation of plaque-surrounding haloes that increased in size over the course of incubation. When screened against a panel of 21 clinical strains representing unknown K. pneumoniae subsp. pneumoniae capsule types and types K1, K2, K5, K20, K54 and K57, KLPN1 infected only K2 strains, but did not exhibit depolymerase activity against these. Whole-genome sequence analysis of KLPN1 showed the bacteriophage to have a genome of 49,037 bp (50.53 GC mol%) comprising 73 predicted ORFs, of which 22 encoded genes associated with structure, host recognition, packaging, DNA replication and cell lysis. The host recognition-associated gene was a potential depolymerase. This is the first report of the isolation of a bacterium–bacteriophage combination from the human caecum, and only the third member of the Siphoviridae known to infect K. pneumoniae subsp. pneumoniae.
Resumo:
Fusobacterium necrophorum is a causative agent of Lemierre’s syndrome (LS) in humans. LS is characterised by thrombophlebitis of the jugular vein and bacteraemia. Disseminated intravascular coagulation is also a documented symptom. F. necrophorum is a Gram-negative, anaerobic bacterium known to possess virulence genes such as a haemolysin, filamentous haemagglutinin and leukotoxin, which target host blood components. Ecotin is a serine protease inhibitor that has not previously been characterised in F. necrophorum, but in E.coli has been shown to have a potent anticoagulant effect. Next generation and Sanger sequencing were used to confirm the presence of the ecotin gene in the genomes of a collection of F. necrophorum clinical and reference strains. When translated, it was found to be a highly conserved protein made up of159 amino acids. Enzyme/substrate inhibition assays demonstrated that F. necrophorum ecotin inhibits human plasma kallikrein and human neutrophil elastase in a dose-dependent manner. Data will also be presented on the anticoagulant effects of ecotin during activated partial thromboplastin time, thrombin time and prothrombin time tests on human donor blood. The mechanisms for how this organism reaches the bloodstream and the significance of this serine protease inhibitor during F. necrophorum infections remain to be elucidated
Resumo:
Fusobacterium necrophorum is a causative agent of persistent sore throat syndrome, tonsillar abscesses and Lemierre’s syndrome (LS) in humans. LS is characterised by thrombophlebitis of the jugular vein and bacteraemia. It is a Gram-negative, anaerobic bacterium which to date has no available reference genome. Draft genomes suggest it to be a single circular chromosome of approximately 2.2Mb. A reference strain of each of the two F. necrophorum subspecies and a clinical isolate from a LS patient were sequenced on a Roche 454 GS-FLX+. Sequence data was assembled using Roche GS Assembler and the resulting contigs annotated using xBASE, Pfam and BLAST. The annotation data was mined for gene products associated with virulence revealing a leukotoxin, haemolysin, filamentous haemagglutinnin, adhesin, hemin receptor, phage genes, CRISPR-associated proteins, ecotin and a putative type V secretion system. Data will be presented on comparative genomics of the three strains, with a focus on putative virulence genes. Tools such as Artemis Comparison Tool and ClustalO were used for sequence alignments and PhyML was used to generate phylogenetic trees. Conserved motifs associated with virulence were also located. Understanding variations at the genomic level may help to explain the increased virulence of some F. necrophorum strains.
Resumo:
Dietary sources of methylamines such as choline, trimethylamine (TMA), trimethylamine N-oxide (TMAO), phosphatidylcholine (PC) and carnitine are present in a number of foodstuffs, including meat, fish, nuts and eggs. It is recognized that the gut microbiota is able to convert choline to TMA in a fermentation-like process. Similarly, PC and carnitine are converted to TMA by the gut microbiota. It has been suggested that TMAO is subject to ‘metabolic retroversion’ in the gut (i.e. it is reduced to TMA by the gut microbiota, with this TMA being oxidized to produce TMAO in the liver). Sixty-six strains of human faecal and caecal bacteria were screened on solid and liquid media for their ability to utilize trimethylamine N-oxide (TMAO), with metabolites in spent media profiled by Proton Nuclear Magnetic Resonance (1H NMR) spectroscopy. Enterobacteriaceae produced mostly TMA from TMAO, with caecal/small intestinal isolates of Escherichia coli producing more TMA than their faecal counterparts. Lactic acid bacteria (enterococci, streptococci, bifidobacteria) produced increased amounts of lactate when grown in the presence of TMAO, but did not produce large amounts of TMA from TMAO. The presence of TMAO in media increased the growth rate of Enterobacteriaceae; while it did not affect the growth rate of lactic acid bacteria, TMAO increased the biomass of these bacteria. The positive influence of TMAO on Enterobacteriaceae was confirmed in anaerobic, stirred, pH-controlled batch culture fermentation systems inoculated with human faeces, where this was the only bacterial population whose growth was significantly stimulated by the presence of TMAO in the medium. We hypothesize that dietary TMAO is used as an alternative electron acceptor by the gut microbiota in the small intestine/proximal colon, and contributes to microbial population dynamics upon its utilization and retroversion to TMA, prior to absorption and secondary conversion to TMAO by hepatic flavin-containing monooxygenases. Our findings support the idea that oral TMAO supplementation is a physiologically-stable microbiota-mediated strategy to deliver TMA at the gut barrier.