4 resultados para Airport management

em WestminsterResearch - UK


Relevância:

100.00% 100.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper investigates the traffic and financial performance of smaller UK regional airports between 2001 and 2014. Fourteen airports that typically serve less than 5 million passengers per annum were selected for the analysis. A period of strong growth in passenger demand was experienced from 2001 to 2007, driven largely by low cost carriers. The period from 2007 to 2014 was characterised by declining demand, resulting in significant losses for many of the airports. Airline strategies, such as the use of an increased unit fleet size and average sector length, may further limit future prospects for smaller UK regional airports in favour of larger ones with greater local demand. The relationship between traffic throughput and the generation of aeronautical revenues seems to vary at airports. There is generally a strong and significant relationship between traffic throughput and the generation of commercial revenues and total operating costs at airports serving 3–5 million passengers, but the situation for airports serving fewer than 3 million is less certain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Airports have become increasingly active in route development as a means of attracting, growing and retaining air services. However, little is known about the different levels of route development activity at airports, or the extent to which route development activity affects performance. Based on the findings of a survey of 124 airports worldwide, this study finds that larger airports are significantly more active than smaller airports. It also finds that private airports are more active than public airports, and that airports in Europe are more active than airports in other world regions, although differences according to ownership and location are not significant. Route development activity has a significant positive effect on performance. Factors associated with the airport business environment (market turbulence, competitive intensity, market growth and airport constraints) were not found to have a significant moderating effect on the relationship between route development activity and performance. However, two factors were found to have a significant direct effect on performance; market growth has a significant positive effect while airport constraints have a significant negative effect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ground Delay Programs (GDP) are sometimes cancelled before their initial planned duration and for this reason aircraft are delayed when it is no longer needed. Recovering this delay usually leads to extra fuel consumption, since the aircraft will typically depart after having absorbed on ground their assigned delay and, therefore, they will need to cruise at more fuel consuming speeds. Past research has proposed speed reduction strategy aiming at splitting the GDP-assigned delay between ground and airborne delay, while using the same fuel as in nominal conditions. Being airborne earlier, an aircraft can speed up to nominal cruise speed and recover part of the GDP delay without incurring extra fuel consumption if the GDP is cancelled earlier than planned. In this paper, all GDP initiatives that occurred in San Francisco International Airport during 2006 are studied and characterised by a K-means algorithm into three different clusters. The centroids for these three clusters have been used to simulate three different GDPs at the airport by using a realistic set of inbound traffic and the Future Air Traffic Management Concepts Evaluation Tool (FACET). The amount of delay that can be recovered using this cruise speed reduction technique, as a function of the GDP cancellation time, has been computed and compared with the delay recovered with the current concept of operations. Simulations have been conducted in calm wind situation and without considering a radius of exemption. Results indicate that when aircraft depart early and fly at the slower speed they can recover additional delays, compared to current operations where all delays are absorbed prior to take-off, in the event the GDP cancels early. There is a variability of extra delay recovered, being more significant, in relative terms, for those GDPs with a relatively low amount of demand exceeding the airport capacity.