9 resultados para Airport Privatisation

em WestminsterResearch - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Airports have become increasingly active in route development as a means of attracting, growing and retaining air services. However, little is known about the different levels of route development activity at airports, or the extent to which route development activity affects performance. Based on the findings of a survey of 124 airports worldwide, this study finds that larger airports are significantly more active than smaller airports. It also finds that private airports are more active than public airports, and that airports in Europe are more active than airports in other world regions, although differences according to ownership and location are not significant. Route development activity has a significant positive effect on performance. Factors associated with the airport business environment (market turbulence, competitive intensity, market growth and airport constraints) were not found to have a significant moderating effect on the relationship between route development activity and performance. However, two factors were found to have a significant direct effect on performance; market growth has a significant positive effect while airport constraints have a significant negative effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ground Delay Programs (GDP) are sometimes cancelled before their initial planned duration and for this reason aircraft are delayed when it is no longer needed. Recovering this delay usually leads to extra fuel consumption, since the aircraft will typically depart after having absorbed on ground their assigned delay and, therefore, they will need to cruise at more fuel consuming speeds. Past research has proposed speed reduction strategy aiming at splitting the GDP-assigned delay between ground and airborne delay, while using the same fuel as in nominal conditions. Being airborne earlier, an aircraft can speed up to nominal cruise speed and recover part of the GDP delay without incurring extra fuel consumption if the GDP is cancelled earlier than planned. In this paper, all GDP initiatives that occurred in San Francisco International Airport during 2006 are studied and characterised by a K-means algorithm into three different clusters. The centroids for these three clusters have been used to simulate three different GDPs at the airport by using a realistic set of inbound traffic and the Future Air Traffic Management Concepts Evaluation Tool (FACET). The amount of delay that can be recovered using this cruise speed reduction technique, as a function of the GDP cancellation time, has been computed and compared with the delay recovered with the current concept of operations. Simulations have been conducted in calm wind situation and without considering a radius of exemption. Results indicate that when aircraft depart early and fly at the slower speed they can recover additional delays, compared to current operations where all delays are absorbed prior to take-off, in the event the GDP cancels early. There is a variability of extra delay recovered, being more significant, in relative terms, for those GDPs with a relatively low amount of demand exceeding the airport capacity.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ground delay programs typically involve the delaying of aircraft that are departing from origin airports within some set distance of a capacity constrained destination airport. Long haul flights are not delayed in this way. A trade-off exists when fixing the distance parameter: increasing the ‘scope’ distributes delay among more aircraft and may reduce airborne holding delay but could also result in unnecessary delay in the (frequently observed) case of early program cancellation. In order to overcome part of this drawback, a fuel based cruise speed reduction strategy aimed at realizing airborne delay, was suggested by the authors in previous publications. By flying slower, at a specific speed, aircraft that are airborne can recover part of their initially assigned delay without incurring extra fuel consumption if the ground delay program is canceled before planned. In this paper, the effect of the scope of the program is assessed when applying this strategy. A case study is presented by analyzing all the ground delay programs that took place at San Francisco, Newark Liberty and Chicago O’Hare International airports during one year. Results show that by the introduction of this technique it is possible to define larger scopes, partially reducing the amount of unrecovered delay.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En route speed reduction can be used for air traffic flow management (ATFM), e.g., delaying aircraft while airborne or realizing metering at an arrival fix. In previous publications, the authors identified the flight conditions that maximize the airborne delay without incurring extra fuel consumption with respect to the nominal (not delayed) flight. In this paper, the effect of wind on this strategy is studied, and the sensitivity to wind forecast errors is also assessed. A case study done in Chicago O’Hare airport (ORD) is presented, showing that wind has a significant effect on the airborne delay that can be realized and that, in some cases, even tailwinds might lead to an increase in the maximum amount of airborne delay. The values of airborne delay are representative enough to suggest that this speed reduction technique might be useful in a real operational scenario. Moreover, the speed reduction strategy is more robust than nominal operations against fuel consumption in the presence of wind forecast uncertainties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper assesses the departure and approach operations of unmanned aircraft systems in one of the most challenging scenarios: flying under visual flight rules. Inspired by some existing procedures for (manned) general aviation, some automatic and predefined procedures for unmanned aircraft systems are proposed. Hence, standardized paths to specific waypoints close to the airport are defined for departure operations, just before starting the navigation phase. Conversely, and for the approach maneuvers, a first integration into a holding pattern near the landing runway (ideally, above it) is foreseen, followed by a standard visual-flight-rule airfield traffic pattern. This paper discuses the advantages of these operations, which aim to minimize possible conflicts with other existing aircraft while reducing the pilot-in-command workload. Finally, some preliminary simulations are shown in which these procedures have been successfully tested with simulated surrounding traffic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper investigates the traffic and financial performance of smaller UK regional airports between 2001 and 2014. Fourteen airports that typically serve less than 5 million passengers per annum were selected for the analysis. A period of strong growth in passenger demand was experienced from 2001 to 2007, driven largely by low cost carriers. The period from 2007 to 2014 was characterised by declining demand, resulting in significant losses for many of the airports. Airline strategies, such as the use of an increased unit fleet size and average sector length, may further limit future prospects for smaller UK regional airports in favour of larger ones with greater local demand. The relationship between traffic throughput and the generation of aeronautical revenues seems to vary at airports. There is generally a strong and significant relationship between traffic throughput and the generation of commercial revenues and total operating costs at airports serving 3–5 million passengers, but the situation for airports serving fewer than 3 million is less certain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper compares different optimization strategies for the minimization of flight and passenger delays at two levels: pre-tactical, with on-ground delay at origin, and tactical, with airborne delay close to the destination airport. The optimization model is based on the ground holding problem and uses various cost functions. The scenario considered takes place in a busy European airport and includes realistic values of traffic. Uncertainty is introduced in the model for the passenger allocation, minimum time required for turnaround and tactical uncertainty. Performance of the various optimization processes is presented and compared to ratio by schedule results.