1 resultado para 3D Reconstruction
em WestminsterResearch - UK
Filtro por publicador
- Aberdeen University (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (4)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (12)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (5)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (7)
- Aston University Research Archive (12)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (53)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (2)
- Biodiversity Heritage Library, United States (3)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (53)
- Brock University, Canada (4)
- Bulgarian Digital Mathematics Library at IMI-BAS (3)
- CentAUR: Central Archive University of Reading - UK (11)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (13)
- Cochin University of Science & Technology (CUSAT), India (11)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (84)
- Digital Commons - Michigan Tech (2)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (1)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (48)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (11)
- Instituto Politécnico do Porto, Portugal (13)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (4)
- Martin Luther Universitat Halle Wittenberg, Germany (11)
- Massachusetts Institute of Technology (9)
- Ministerio de Cultura, Spain (6)
- National Center for Biotechnology Information - NCBI (1)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (1)
- Publishing Network for Geoscientific & Environmental Data (6)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (15)
- Repositório da Produção Científica e Intelectual da Unicamp (16)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (2)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (21)
- Repositorio Institucional Universidad EAFIT - Medelin - Colombia (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (31)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- Scielo Saúde Pública - SP (37)
- Universidad Autónoma de Nuevo León, Mexico (1)
- Universidad de Alicante (15)
- Universidad del Rosario, Colombia (6)
- Universidad Politécnica de Madrid (17)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade do Minho (21)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (3)
- Universita di Parma (1)
- Universitat de Girona, Spain (20)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (7)
- Université de Lausanne, Switzerland (280)
- Université de Montréal (4)
- Université de Montréal, Canada (58)
- Université Laval Mémoires et thèses électroniques (2)
- University of Michigan (1)
- University of Queensland eSpace - Australia (24)
- University of Southampton, United Kingdom (2)
- University of Washington (2)
- WestminsterResearch - UK (1)
Resumo:
This work presents the design of a real-time system to model visual objects with the use of self-organising networks. The architecture of the system addresses multiple computer vision tasks such as image segmentation, optimal parameter estimation and object representation. We first develop a framework for building non-rigid shapes using the growth mechanism of the self-organising maps, and then we define an optimal number of nodes without overfitting or underfitting the network based on the knowledge obtained from information-theoretic considerations. We present experimental results for hands and faces, and we quantitatively evaluate the matching capabilities of the proposed method with the topographic product. The proposed method is easily extensible to 3D objects, as it offers similar features for efficient mesh reconstruction.