4 resultados para 235
em WestminsterResearch - UK
Resumo:
As Tennyson's “little Hamlet ,” Maud (1855) posits a speaker who, like Hamlet, confronts the ignominious fate of dead remains. Maud's speaker contemplates such remains as bone, hair, shell, and he experiences his world as one composed of hard inorganic matter, such things as rocks, gems, flint, stone, coal, and gold. While Maud's imagery of “stones, and hard substances” has been read as signifying the speaker's desire “unnaturally to harden himself into insensibility” (Killham 231, 235), I argue that these substances benefit from being read in the context of Tennyson's wider understanding of geological processes. Along with highlighting these materials, the text's imagery focuses on processes of fossilisation, while Maud's characters appear to be in the grip of an insidious petrification. Despite the preoccupation with geological materials and processes, the poem has received little critical attention in these terms. Dennis R. Dean, for example, whose Tennyson and Geology (1985) is still the most rigorous study of the sources of Tennyson's knowledge of geology, does not detect a geological register in the poem, arguing that by the time Tennyson began to write Maud, he was “relatively at ease with the geological world” (Dean 21). I argue, however, that Maud reveals that Tennyson was anything but “at ease” with geology. While In Memoriam (1851) wrestles with religious doubt that is both initiated, and, to some extent, alleviated by geological theories, it finally affirms the transcendence of spirit over matter. Maud, conversely, gravitates towards the ground, concerning itself with the corporal remains of life and with the agents of change that operate on all matter. Influenced by his reading of geology, and particularly Charles Lyell's provocative writings on the embedding and fossilisation of organic material in strata in his Principles of Geology (1830–33) volume 2, Tennyson's poem probes the taphonomic processes that result in the incorporation of dead remains and even living flesh into the geological system.
Resumo:
The construction industry wants graduate employees skilled in relationship building and information technology and communications (ITC). Much of the relationship building at universities has evolved through technology. Government and the ITC industry fund lobby groups to influence both educational establishments and Government to incorporate more ITC in education _ and ultimately into the construction industry. This influencing ignores the technoskeptics’ concerns about student disengagement through excessive online distractions. Construction studies students (n=64) and lecturers (n=16) at a construction university were surveyed to discover the impact of the use and applications of ITC. Contrary to Government and industry technopositivism, construction students and lecturers preferred hard copy documents to online feedback for assignments and marking, more human interface and less technological substitution and to be on campus for lectures and face-to-face meetings rather than viewing on-screen. ITC also distracted users from tasks which, in the case of students, prevented the development of the concentration and deep thinking which a university education should deliver. The research findings are contrary to the promotions of Government, ITC industry and ITC departments and have implications for construction employers where a renewed focus on human communication should mean less stress, fewer delays and cost overruns.
Resumo:
Besides core project partners, the SCI-BUS project also supported several external user communities in developing and setting up customized science gateways. The focus was on large communities typically represented by other European research projects. However, smaller local efforts with the potential of generalizing the solution to wider communities were also supported. This chapter gives an overview of support activities related to user communities external to the SCI-BUS project. A generic overview of such activities is provided followed by the detailed description of three gateways developed in collaboration with European projects: the agINFRA Science Gateway for Workflows for agricultural research, the VERCE Science Gateway for seismology, and the DRIHM Science Gateway for weather research and forecasting.