28 resultados para LCL filters
Resumo:
This letter proposes a high-linearity reconfigurable lower ultra-wideband (3.1–5.25 GHz) filter with independently controlled dual bandnotch at WiMAX 3.5 GHz band and satellite communication systems 4.2 GHz band. Reconfigurability has been achieved by the implementation of Graphene based switches (simulation only) and PIN diodes (measurements). The simulation and measurement results in OFF state show an entire bandpass response from 3.1 GHz to 5.25 GHz and with a very low insertion loss. In ON state, the results show that sharp rejections at 3.5 GHz and 4.2 GHz are achieved, with a low passband insertion loss. The two bandnotch operate independently of each other; thus allowing to control the behaviour of the required bandnotch. The third order intermodulation products were also measured in OFF and ON states and the linearity results have been presented. The filter is able to achieve a high performance with good linearity and no significant loss.
Resumo:
This paper is on the use and performance of M-path polyphase Infinite Impulse Response (IIR) filters for channelisation, conventionally where Finite Impulse Response (FIR) filters are preferred. This paper specifically focuses on the Discrete Fourier Transform (DFT) modulated filter banks, which are known to be an efficient choice for channelisation in communication systems. In this paper, the low-pass prototype filter for the DFT filter bank has been implemented using an M-path polyphase IIR filter and we show that the spikes present at the stopband can be avoided by making use of the guardbands between narrowband channels. It will be shown that the channelisation performance will not be affected when polyphase IIR filters are employed instead of their counterparts derived from FIR prototype filters. Detailed complexity and performance analysis of the proposed use will be given in this article.
Resumo:
This paper is based on the novel use of a very high fidelity decimation filter chain for Electrocardiogram (ECG) signal acquisition and data conversion. The multiplier-free and multi-stage structure of the proposed filters lower the power dissipation while minimizing the circuit area which are crucial design constraints to the wireless noninvasive wearable health monitoring products due to the scarce operational resources in their electronic implementation. The decimation ratio of the presented filter is 128, working in tandem with a 1-bit 3rd order Sigma Delta (ΣΔ) modulator which achieves 0.04 dB passband ripples and -74 dB stopband attenuation. The work reported here investigates the non-linear phase effects of the proposed decimation filters on the ECG signal by carrying out a comparative study after phase correction. It concludes that the enhanced phase linearity is not crucial for ECG acquisition and data conversion applications since the signal distortion of the acquired signal, due to phase non-linearity, is insignificant for both original and phase compensated filters. To the best of the authors’ knowledge, being free of signal distortion is essential as this might lead to misdiagnosis as stated in the state of the art. This article demonstrates that with their minimal power consumption and minimal signal distortion features, the proposed decimation filters can effectively be employed in biosignal data processing units.
Resumo:
This paper presents the design analysis of novel tunable narrow-band bandpass sigma-delta modulators, which can achieve concurrent multiple noise-shaping for multi-tone input signals. Four different design methodologies based on the noise transfer functions of comb filters, slink filters, multi-notch filters and fractional delay comb filters are applied for the design of these multiple-band sigma-delta modulators. The latter approach utilises conventional comb filters in conjunction with FIR, or allpass IIR fractional delay filters, to deliver the desired nulls for the quantisation noise transfer function. Detailed simulation results show that FIR fractional delay comb filter-based sigma-delta modulators tune accurately to most centre frequencies, but suffer from degraded resolution at frequencies close to Nyquist. However, superior accuracies are obtained from their allpass IIR fractional delay counterpart at the expense of a slight shift in noise-shaping bands at very high frequencies. The merits and drawbacks of each technique for the various sigma-delta topologies are assessed in terms of in-band signal-to-noise ratios, accuracy of tunability and coefficient complexity for ease of implementation.
Resumo:
Phase and gain mismatches between the I and Q analog signal processing paths of a quadrature receiver are responsible for the generation of image signals which limit the dynamic range of a practical receiver. In this paper we analyse the effects these mismatches and propose a low-complexity blind adaptive algorithm to minimize this problem. The proposed solution is based on two, 2-tap adaptive filters, arranged in Adaptive Noise Canceller (ANC) set-up. The algorithm lends itself to efficient real-time implementation with minimal increase in modulator complexity.
Resumo:
I and Q Channel phase and gain misniatches are of great concern in communications receiver design. In this paper we analyse the effects of I and Q channel mismatches and propose a low-complexity blind adaptive algorithm to minimize this problem. The proposed solution consists of two, 2-tap adaptive filters, arranged in Adaptive Noise Canceller (ANC) set-up, with the output of one cross-fed to the input of the other. The system works as a de-correlator eliminating I and Q mismatch errors.
Resumo:
Polyphase IIR structures have recently proven themselves very attractive for very high performance filters that can be designed using very few coefficients. This, combined with their low sensitivity to coefficient quantization in comparison to standard FIR and IIR structures, makes them very applicable for very fast filtering when implemented in fixed-point arithmetic. However, although the mathematical description is very simple, there exist a number of ways to implement such filters. In this paper, we take four of these different implementation structures, analyze the rounding noise originating from the limited arithmetic wordlength of the mathematical operators, and check the internal data growth within the structure. These analyses need to be done to ensure that the performance of the implementation matches the performance of the theoretical design. The theoretical approach that we present has been proven by the results of the fixed-point simulation done in Simulink and verified by an equivalent bit-true implementation in VHDL.
Resumo:
This paper presents a comparative study of complex single-bit and multi-bit sigma-delta modulators that are capable of providing concurrent multiple-band noise-shaping for multi-tone narrow-band input signals. The concepts applied for the three design methodologies are based on the noise transfer functions of complex comb, complex slink and complex multi-notch filters.
Resumo:
Two novel effective-fourth-order (eighth-order) resonator based MASH (MultistAge noise SHaping) bandpass Σ-Δ modulators are introduced at the behavioural level and subsequently examined by simulations utilising the ALTA SPW environment. The considered bandpass configurations have in their loop filter a cascade of standard second-order resonator structures in order to achieve appropriate noise shaping. The quantisation noise in each stage is suppressed by feeding the error of each section into the input of the following stage. It is demonstrated in this paper that the quadruple effective-first-order cascade configuration has significantly better performance as well as conforming more closely with theory in comparison with the effective-second-order effective-second-order cascade. The superior performance of the former can be attributed to the cumulative effect of the multi-bit outputs as well as the presence of more notch filters.
Resumo:
A novel, compact and highly selective microstrip bandpass filter with bandwidth reconfigurability for ultra-wideband (UWB) applications is presented. The proposed design uses stepped impedance resonator (SIR) for realization of bandpass filter (BPF) and employs a single varactor diode (BB135-NXP) for the purpose of reconfiguring bandwidth. Additionally, to improve the selectivity between passband edges, a cross-coupling between I/O feed lines is introduced which generated pairs of attenuation poles at each side of the passband. Measurements on a fabricated reconfigurable filter confirm the accuracy of the design procedure. Measured responses show good agreement with simulation. The proposed filter is able to achieve significant size reduction (8.5 mm × 7.1 mm excluding the feeding ports) as compared to the conventional bandpass filters with reconfigurable bandwidth.
Resumo:
An evaluation of the change in perceived image contrast with changes in displayed image size was carried out. This was achieved using data from four psychophysical investigations, which employed techniques to match the perceived contrast of displayed images of five different sizes. A total of twenty-four S-shape polynomial functions were created and applied to every original test image to produce images with different contrast levels. The objective contrast related to each function was evaluated from the gradient of the mid-section of the curve (gamma). The manipulation technique took into account published gamma differences that produced a just-noticeable-difference (JND) in perceived contrast. The filters were designed to achieve approximately half a JND, whilst keeping the mean image luminance unaltered. The processed images were then used as test series in a contrast matching experiment. Sixty-four natural scenes, with varying scene content acquired under various illumination conditions, were selected from a larger set captured for the purpose. Results showed that the degree of change in contrast between images of different sizes varied with scene content but was not as important as equivalent perceived changes in sharpness.
Resumo:
This research considers cross-national diffusion of international human resource management (IHRM) ideas and practices by applying an emergent frame of sociological conceptualisation – ‘social institutionalism’ (SI). We look at cultural filters to patterns of diffusion, assimilation and adoption of IHRM, using Romania as a case study. The paper considers the former Communist system of employment relations, suggesting that through institutionalisation former ways of thinking continued to influence definitions and practice of people management in post-Communist Eastern Europe. The paper provides a new perspective on HRM by discussing the value of SI as a general model for understanding cross-cultural receptivity to HR ideas, sensitising the HR practitioner and academic to institutionalised culture as a historical legacy influencing receptivity to international management ideas.