20 resultados para Emergency clothing supply.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a method for analysing the operational complexity in supply chains by using an entropic measure based on information theory. The proposed approach estimates the operational complexity at each stage of the supply chain and analyses the changes between stages. In this paper a stage is identified by the exchange of data and/or material. Through analysis the method identifies the stages where the operational complexity is both generated and propagated (exported, imported, generated or absorbed). Central to the method is the identification of a reference point within the supply chain. This is where the operational complexity is at a local minimum along the data transfer stages. Such a point can be thought of as a ‘sink’ for turbulence generated in the supply chain. Where it exists, it has the merit of stabilising the supply chain by attenuating uncertainty. However, the location of the reference point is also a matter of choice. If the preferred location is other than the current one, this is a trigger for management action. The analysis can help decide appropriate remedial action. More generally, the approach can assist logistics management by highlighting problem areas. An industrial application is presented to demonstrate the applicability of the method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper considers how urban consolidation centres (UCCs) can be used in the supply chain to reduce goods vehicle traffic and its associated environmental impacts, while also helping to make supply chains more responsive and efficient and thereby generate commercial benefits. The role of UCCs is presented and the various types discussed. The potential supply chain impacts of UCCs are considered. Case studies of six UCC schemes and trials are included, with their objectives, operational characteristics and impacts compared. The critical success factors associated with UCCs are identified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Partner selection is crucial to green supply chain management as the focal firm is responsible for the environmental performance of the whole supply chain. The construction of appropriate selection criteria is an essential, but often neglected pre-requisite in the partner selection process. This paper proposes a three-stage model that combines Dempster-Shafer belief acceptability theory and particle swarm optimization technique for the first time in this application. This enables optimization of both effectiveness, in its consideration of the inter-dependence of a broad range of quantitative and qualitative selection criteria, and efficiency in its use of scarce resources during the criteria construction process to be achieved simultaneously. This also enables both operational and strategic attributes can be selected at different levels of hierarchy criteria in different decision-making environments. The practical efficacy of the model is demonstrated by an application in Company ABC, a large Chinese electronic equipment and instrument manufacturer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study was to develop, test and benchmark a framework and a predictive risk model for hospital emergency readmission within 12 months. We performed the development using routinely collected Hospital Episode Statistics data covering inpatient hospital admissions in England. Three different timeframes were used for training, testing and benchmarking: 1999 to 2004, 2000 to 2005 and 2004 to 2009 financial years. Each timeframe includes 20% of all inpatients admitted within the trigger year. The comparisons were made using positive predictive value, sensitivity and specificity for different risk cut-offs, risk bands and top risk segments, together with the receiver operating characteristic curve. The constructed Bayes Point Machine using this feature selection framework produces a risk probability for each admitted patient, and it was validated for different timeframes, sub-populations and cut-off points. At risk cut-off of 50%, the positive predictive value was 69.3% to 73.7%, the specificity was 88.0% to 88.9% and sensitivity was 44.5% to 46.3% across different timeframes. Also, the area under the receiver operating characteristic curve was 73.0% to 74.3%. The developed framework and model performed considerably better than existing modelling approaches with high precision and moderate sensitivity.