4 resultados para wtiness to distant suffering

em Worcester Research and Publications - Worcester Research and Publications - UK


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background. Ambrosia artemisiifolia L. is a noxious invasive alien species in Europe. It is an important aeroallergen and millions of people are exposed to its pollen. Objective. The main aim of this study is to show that atmospheric concentrations of Ambrosia pollen recorded in Denmark can be derived from local or more distant sources. Methods. This was achieved by using a combination of pollen measurements, air mass trajectory calculations using the HYPLIT model and mapping all known Ambrosia locations in Denmark and relating them to land cover types. Results. The annual pollen index recorded in Copenhagen during a 15-year period varied from a few pollen grains to more than 100. Since 2005, small quantities of Ambrosia pollen has been observed in the air every year. We have demonstrated, through a combination of Lagrangian back-trajectory calculations and atmospheric pollen measurements, that pollen arrived in Denmark via long-distance transport from centres of Ambrosia infection, such as the Pannonian Plain and Ukraine. Combining observations with results from a local scale dispersion model show that it is possible that Ambrosia pollen could be derived from local sources identified within Denmark. Conclusions. The high allergenic capacity of Ambrosia pollen means that only small amounts of pollen are relevant for allergy sufferers, and just a few plants will be sufficient to produce enough pollen to affect pollen allergy sufferers within a short distance from the source. It is necessary to adopt control measures to restrict Ambrosia numbers. Recommendations for the removal of all Ambrosia plants can effectively reduce the amount of local pollen, as long as the population of Ambrosia plants is small.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pollen grains from the genus ragweed (Ambrosia spp.) are important aeroallergens. In Europe, the largest sources of atmospheric ragweed pollen are the Rhône Valley (France), parts of Northern Italy, the Pannonian Plain and Ukraine. Episodes of Long Distance Transport (LDT) of ragweed pollen from these centres can cover large parts of Europe and are predominantly studied using receptor based models (Smith et al., (2013) and references therein). The clinical impact of allergenic ragweed pollen arriving from distant sources remains unclear (Cecchi et al. 2010). Although a recent study has found the major allergens of ragweed in air samples collected in Poznań, Poland, during episodes of long-distance transport from the Pannonian Plain (Grewling et al. 2013). The source orientated models SILAM, DEHM, COSMO-Art, METRAS and ENVIRO-HIRLAM currently report having the capability of modelling atmospheric concentrations of pollen in Europe. The performance of such source-orientated models is strongly dependent on the quality of the emissions data, which is a focus of current research (e.g. Thibaudon et al. (2014)). The output from these models are important for warning allergy sufferers in areas polluted by ragweed, but could also be used to warn the public of ragweed pollen being transported into areas where the plant is not abundant. Areas outside of the main areas of ragweed infection that contain considerable local populations must, however, also include local scale models. These models can be used to predict local concentrations, even when LDT is not present. This concept of combined LDT and local scale calculations has been shown to be work for air pollutants and is considered usable for urban scale calculations of aeroallergens once urban scale maps of aeroallergen sources have been produced.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climate change will exacerbate challenges facing food security in the UK. Increasing frequency and intensity of extreme weather events will further impact upon farm systems. At the heart of the impending challenges to UK agricultural production, farmers’ resilience will be tested to new limits. Research into farmers’ resilience to climate change in the UK is distinctly underdeveloped when compared to research in developing and other developed nations. This research gap is addressed through exploration of farmers’ resilience in the Welsh Marches, establishing the role of risk perceptions, local knowledge and adaptive capacity in farmers’ decision-making to limit climate shocks. Further contributions to agricultural geography are made through experimentation of a ‘cultural-behavioural approach’, seeking to revisit the behavioural approach in view of the cultural-turn. The Welsh Marches, situated on the English-Welsh border, has been selected as a focal point due to its agricultural diversity, and known experiences of extreme weather events. A phased mixed methodological approach is adopted. Phase one explores recorded and reported experiences of past extreme weather events in local meteorological records and local newspaper articles. Phase two consists of 115 survey-questionnaires, 15 in-depth semi-structured interviews, and a scenario based focus group with selected farmers from the Welsh Marches. This allows farmers’ resilience to climate change in the past, present and future to be explored. Original contributions to knowledge are made through demonstrating the value of focusing upon the culture of a specific farm community, applying a ‘bottom-up’ approach. The priority given to the weather in farmers’ decision-making is identified to be determined by individual relationships that farmers’ develop with the weather. Yet, a consensus of farmers’ observations has established recognition of considerable changes in the weather over the last 30 years, acknowledging more extremes and seasonal variations. In contrast, perceptions of future climate change are largely varied. Farmers are found to be disengaged with the communication of climate change science, as the global impacts portrayed are distant in time and place from probable impacts that may be experienced locally. Current communication of climate change information has been identified to alienate farmers from the local reality of probable future impacts. Adaptation options and responses to extreme weather and climate change are identified from measures found to be already implemented and considered for the future. A greater need to explore local knowledge and risk perception in relation to farmers’ understanding of future climate challenges is clear. There is a need to conduct comparable research in different farm communities across the UK. Progression into establishing the role of farmers’ resilience in responding effectively to future climate challenges has only just begun.