2 resultados para single molecule resolution microscopy

em Worcester Research and Publications - Worcester Research and Publications - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quantifying the topography of rivers and their associated bedforms has been a fundamental concern of fluvial geomorphology for decades. Such data, acquired at high temporal and spatial resolutions, are increasingly in demand for process-oriented investigations of flow hydraulics, sediment dynamics and in-stream habitat. In these riverine environments, the most challenging region for topographic measurement is the wetted, submerged channel. Generally, dry bed topography and submerged bathymetry are measured using different methods and technology. This adds to the costs, logistical challenges and data processing requirements of comprehensive river surveys. However, some technologies are capable of measuring the submerged topography. Through-water photogrammetry and bathymetric LiDAR are capable of reasonably accurate measurements of channel beds in clear water. Whilst the cost of bathymetric LiDAR remains high and its resolution relatively coarse, the recent developments in photogrammetry using Structure from Motion (SfM) algorithms promise a fundamental shift in the accessibility of topographic data for a wide range of settings. Here we present results demonstrating the potential of so called SfM-photogrammetry for quantifying both exposed and submerged fluvial topography at the mesohabitat scale. We show that imagery acquired from a rotary-winged Unmanned Aerial System (UAS) can be processed in order to produce digital elevation models (DEMs) with hyperspatial resolutions (c. 0.02 m) for two different river systems over channel lengths of 50-100 m. Errors in submerged areas range from 0.016 m to 0.089 m, which can be reduced to between 0.008 m and 0.053 m with the application of a simple refraction correction. This work therefore demonstrates the potential of UAS platforms and SfM-photogrammetry as a single technique for surveying fluvial topography at the mesoscale (defined as lengths of channel from c.10 m to a few hundred metres). This article is protected by copyright. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ecological studies that examine species-environment relationships are often limited to several meteorological parameters, i.e. mean air temperature, relative humidity, precipitation, vapour pressure deficit and solar radiation. The impact of local wind, its speed and direction are less commonly investigated in aerobiological surveys mainly due to difficulties related to the employment of specific analytical tools and interpretation of their outputs. Identification of inoculum sources of economically important plant pathogens, as well as highly allergenic bioaerosols like Cladosporium species, has not been yet explored with remote sensing data and atmospheric models such as Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT). We, therefore, performed an analysis of 24 h intra-diurnal cycle of Cladosporium spp. spores from an urban site in connection with both the local wind direction and overall air mass direction computed by HYSPLIT. The observational method was a volumetric air sampler of the Hirst design with 1 h time resolution and corresponding optical detection of fungal spores with light microscopy. The atmospheric modelling was done using the on-line data set from GDAS with 1° resolution and circular statistical methods. Our results showed stronger, statistically significant correlation (p ≤ 0.05) between high Cladosporium spp. spore concentration and air mass direction compared to the local wind direction. This suggested that a large fraction of the investigated fungal spores had a regional origin and must be located more than a few kilometers away from the sampling point.