1 resultado para high dimensional growing self organizing map with randomness
em Worcester Research and Publications - Worcester Research and Publications - UK
Filtro por publicador
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (1)
- Aberdeen University (3)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (4)
- AMS Campus - Alm@DL - Università di Bologna (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (2)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Aquatic Commons (3)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (7)
- Aston University Research Archive (42)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (12)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (7)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (3)
- Bioline International (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (43)
- Boston University Digital Common (21)
- Brock University, Canada (6)
- Bulgarian Digital Mathematics Library at IMI-BAS (5)
- CaltechTHESIS (10)
- Cambridge University Engineering Department Publications Database (45)
- CentAUR: Central Archive University of Reading - UK (31)
- Center for Jewish History Digital Collections (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (84)
- Cochin University of Science & Technology (CUSAT), India (1)
- Coffee Science - Universidade Federal de Lavras (1)
- Collection Of Biostatistics Research Archive (7)
- CORA - Cork Open Research Archive - University College Cork - Ireland (4)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (2)
- Department of Computer Science E-Repository - King's College London, Strand, London (2)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (2)
- Digital Commons at Florida International University (6)
- Digital Repository at Iowa State University (1)
- DigitalCommons@The Texas Medical Center (3)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (3)
- Duke University (16)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (11)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Greenwich Academic Literature Archive - UK (5)
- Helda - Digital Repository of University of Helsinki (20)
- Indian Institute of Science - Bangalore - Índia (68)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (1)
- Instituto Politécnico do Porto, Portugal (1)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Massachusetts Institute of Technology (7)
- Ministerio de Cultura, Spain (2)
- National Center for Biotechnology Information - NCBI (8)
- Nottingham eTheses (3)
- Publishing Network for Geoscientific & Environmental Data (2)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (44)
- Queensland University of Technology - ePrints Archive (126)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (3)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (42)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (4)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- School of Medicine, Washington University, United States (1)
- Scielo España (2)
- Scielo Uruguai (1)
- Universidad de Alicante (13)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (21)
- Universidade Complutense de Madrid (2)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (7)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Lausanne, Switzerland (4)
- Université de Montréal, Canada (2)
- University of Connecticut - USA (1)
- University of Michigan (13)
- University of Queensland eSpace - Australia (20)
- University of Washington (4)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
The use of remote sensing for monitoring of submerged aquatic vegetation (SAV) in fluvial environments has been limited by the spatial and spectral resolution of available image data. The absorption of light in water also complicates the use of common image analysis methods. This paper presents the results of a study that uses very high resolution (VHR) image data, collected with a Near Infrared sensitive DSLR camera, to map the distribution of SAV species for three sites along the Desselse Nete, a lowland river in Flanders, Belgium. Plant species, including Ranunculus aquatilis L., Callitriche obtusangula Le Gall, Potamogeton natans L., Sparganium emersum L. and Potamogeton crispus L., were classified from the data using Object-Based Image Analysis (OBIA) and expert knowledge. A classification rule set based on a combination of both spectral and structural image variation (e.g. texture and shape) was developed for images from two sites. A comparison of the classifications with manually delineated ground truth maps resulted for both sites in 61% overall accuracy. Application of the rule set to a third validation image, resulted in 53% overall accuracy. These consistent results show promise for species level mapping in such biodiverse environments, but also prompt a discussion on assessment of classification accuracy.