2 resultados para environmental flow

em Worcester Research and Publications - Worcester Research and Publications - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Water use invariably results in major impacts on river flows. Environmental Flows (EF) are defined as the quantity and quality of water that is needed to preserve the structure and the function of the river and riparian zone ecosystem and sufficient quantity of water to enable the survival and reproduction of aquatic organisms in different hydraulic habitats. This paper describes the criteria and methods used to determine EF and experiences with their application in Slovenia. The diversity of running waters of Slovenia demand special treatment and determination of EF for each individual section of the river system. Using hydrological, morphological and ecological criteria, two different approaches are used for the determination of EF in Slovenia, a rapid assessment method and a detailed assessment method. For both methods, data are then analyzed by an expert panel in order to determine an EF. Since 1994, more than 180 study sites have been examined for research and application of EF in Slovenia. Determination of EF for existing users has prioritized their water requirements so they can remain economically viable. Where new schemes are proposed, there has been much greater scope to prioritize ecosystem requirements. EF determination is receiving growing attention and will continue to increase in importance, driven by research that aids our understanding of flow-biota relationships and recent environmental policy and legislation at both the national and European level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surface flow types (SFT) are advocated as ecologically relevant hydraulic units, often mapped visually from the bankside to characterise rapidly the physical habitat of rivers. SFT mapping is simple, non-invasive and cost-efficient. However, it is also qualitative, subjective and plagued by difficulties in recording accurately the spatial extent of SFT units. Quantitative validation of the underlying physical habitat parameters is often lacking, and does not consistently differentiate between SFTs. Here, we investigate explicitly the accuracy, reliability and statistical separability of traditionally mapped SFTs as indicators of physical habitat, using independent, hydraulic and topographic data collected during three surveys of a c. 50m reach of the River Arrow, Warwickshire, England. We also explore the potential of a novel remote sensing approach, comprising a small unmanned aerial system (sUAS) and Structure-from-Motion photogrammetry (SfM), as an alternative method of physical habitat characterisation. Our key findings indicate that SFT mapping accuracy is highly variable, with overall mapping accuracy not exceeding 74%. Results from analysis of similarity (ANOSIM) tests found that strong differences did not exist between all SFT pairs. This leads us to question the suitability of SFTs for characterising physical habitat for river science and management applications. In contrast, the sUAS-SfM approach provided high resolution, spatially continuous, spatially explicit, quantitative measurements of water depth and point cloud roughness at the microscale (spatial scales ≤1m). Such data are acquired rapidly, inexpensively, and provide new opportunities for examining the heterogeneity of physical habitat over a range of spatial and temporal scales. Whilst continued refinement of the sUAS-SfM approach is required, we propose that this method offers an opportunity to move away from broad, mesoscale classifications of physical habitat (spatial scales 10-100m), and towards continuous, quantitative measurements of the continuum of hydraulic and geomorphic conditions which actually exists at the microscale.