3 resultados para decapitation
em Worcester Research and Publications - Worcester Research and Publications - UK
Resumo:
Background We have previously shown that either the continuous intake of a palatable hyperlipidic diet (H) or the alternation of chow (C) and an H diet (CH regimen) induced obesity in rats. Here, we investigated whether the time of the start and duration of these feeding regimens are relevant and whether they affect brain glucose metabolism. Methods Male Wistar rats received C, H, or CH diets during various periods of their life spans: days 30-60, days 30-90, or days 60-90. Experiments were performed the 60th or the 90th day of life. Rats were killed by decapitation. The glucose, insulin, leptin plasma concentration, and lipid content of the carcasses were determined. The brain was sliced and incubated with or without insulin for the analysis of glucose uptake, oxidation, and the conversion of [1-14C]-glucose to lipids. Results The relative carcass lipid content increased in all of the H and CH groups, and the H30-60 and H30-90 groups had the highest levels. Groups H30-60, H30-90, CH30-60, and CH30-90 exhibited a higher serum glucose level. Serum leptin increased in all H groups and in the CH60-90 and CH30-90 groups. Serum insulin was elevated in the H30-60, H60-90, CH60-90, CH30-90 groups. Basal brain glucose consumption and hypothalamic insulin receptor density were lower only in the CH30-60 group. The rate of brain lipogenesis was increased in the H30-90 and CH30-90 groups. Conclusion These findings indicate that both H and CH diet regimens increased body adiposity independent treatment and the age at which treatment was started, whereas these diets caused hyperglycemia and affected brain metabolism when started at an early age.
Resumo:
We examine whether feeding pregnant and lactating rats hydrogenated fats rich in trans fatty acids modifies the plasma lipid profiles and the expression of adipokines involved with insulin resistance and cardiovascular disease in their 90-day-old offspring. Pregnant and lactating Wistar rats were fed with either a control diet (C group) or one enriched with hydrogenated vegetable fat (T group). Upon weaning, the male pups were sorted into four groups: CC, mothers were receiving C and pups were kept on C; CT, mothers were receiving C and pups were fed with T; TT, mothers were receiving T and pups were kept on T; TC, mothers were receiving T and pups were fed with C. Pups' food intake and body weight were quantified weekly and the pups were killed at day 90 of life by decapitation. Blood and carcass as well as retroperitoneal, epididymal, and subcutaneous white adipose tissues were collected. Food intake and body weight were lower in TC and TT, and metabolic efficiency was reduced in TT. Offspring of TT and TC rats had increased white adipose tissue PAI-1 gene expression. Insulin receptor was higher in TT than other groups. Ingestion of hydrogenated vegetable fat by the mother during gestation and lactation could promote deleterious consequences, even after the withdrawal of the causal factor.
Resumo:
Objective We examined whether feeding pregnant and lactating rats hydrogenated fats rich in trans-fatty acids modifies the plasma lipid profiles and the expression of adipokines involved with insulin resistance and cardiovascular disease in their 21-d-old offspring. Methods Pregnant and lactating Wistar rats were fed with a control diet (C group) or one enriched with hydrogenated vegetable fat (T group). After delivery, male offspring were weighed weekly and killed at day 21 of life by decapitation. Blood and retroperitoneal, epididymal, and subcutaneous white adipose tissues were collected. Results Offspring of T-group rats had increased serum triacylglycerols and cholesterol, white adipose tissue plasminogen activator inhibitor-1, and tumor necrosis factor-α gene expression, and carcass lipid content and decreased blood leptin and adiponectin and adiponectin gene expression. Conclusion Ingestion of hydrogenated vegetable fat by the mother during gestation and lactation alters the blood lipid profiles and the expression of proinflammatory adipokynes by the adipose tissue of offspring aged 21 d.