4 resultados para agricultural and horticultural pest
em Worcester Research and Publications - Worcester Research and Publications - UK
Resumo:
We propose here the hypothesis that all of United Kingdom (UK) is likely to be affected by Ganoderma sp. spores, an important plant pathogen. We suggest that the main sources of this pathogen, which acts as a bioaerosol, are the widely scattered woodlands in the country, although remote sources must not be neglected. The hypothesis is based on related studies on bioaerosols and supported by new observations from a non-forest site and model calculations to support our hypothesis. Hourly concentrations of Ganoderma sp. spores were measured from 2006 to 2010 using a 7-day volumetric spore trap at the city of Worcester. The concentrations peak during the night and early in the morning. This suggests that the main spore sources are located a few hours away with respect to air masses transport and reach urban areas thanks to air masses transport. The back-trajectory analysis was applied to determine the location of Ganoderma sp. spore sources. The analysis of back-trajectories demonstrated that 78% of the air masses reached Worcester from a 180° arc direction from the East to West. Three episodes were selected for detailed investigation and they revealed that during the episodes air masses always passed main UK woodlands before the arrival in Worcester, independently of their origin, but the long distance transport under certain conditions might be possible. Our studies suggest that the sources of UK Ganoderma sp. spores are mainly to be found in UK. Hence our studies suggest that research and mitigation strategies in UK should give their main attention to national sources, without neglecting the contribution from long distance transport.
Resumo:
Introduction: In aerobiological studies it is often necessary to compare concentration data recorded with different models of sampling instrument. Sampler efficiency typically varies from device to device, and depends on the target aerosol and local atmospheric conditions. To account for these differences inter-sampler correction factors may be applied, however for many pollen samplers and pollen taxa such correction factors do not exist and cannot be derived from existing published work. Materials and methods: In this study the relative efficiencies of the Burkard 7-Day Recording Volumetric Spore Trap, the Sampling Technologies Rotorod Model 20 and the Burkard Personal Volumetric Air Sampler were evaluated for Urticaceae and Poaceae pollen under field conditions, and the influence of wind speed and relative humidity on these efficiency relationships was assessed. Data for the two pollen taxa were collected during 2010 and 2011-12 respectively. Results: The three devices were found to record significantly different concentrations for both pollen taxa, with the exception of the 7-Day and Rotorod samplers for Poaceae pollen. Under the range of conditions present during the study wind speed was found to only have a significant impact on inter-sampler relationships involving the vertically orientated Burkard Personal sampler, whilst no interaction between relative efficiency and relative humidity was observed. Conclusions: Data collected with the three models of sampler should only be compared once the appropriate correction has been made, with wind speed taken into account where appropriate.
Resumo:
Background. Ambrosia artemisiifolia L. is a noxious invasive alien species in Europe. It is an important aeroallergen and millions of people are exposed to its pollen. Objective. The main aim of this study is to show that atmospheric concentrations of Ambrosia pollen recorded in Denmark can be derived from local or more distant sources. Methods. This was achieved by using a combination of pollen measurements, air mass trajectory calculations using the HYPLIT model and mapping all known Ambrosia locations in Denmark and relating them to land cover types. Results. The annual pollen index recorded in Copenhagen during a 15-year period varied from a few pollen grains to more than 100. Since 2005, small quantities of Ambrosia pollen has been observed in the air every year. We have demonstrated, through a combination of Lagrangian back-trajectory calculations and atmospheric pollen measurements, that pollen arrived in Denmark via long-distance transport from centres of Ambrosia infection, such as the Pannonian Plain and Ukraine. Combining observations with results from a local scale dispersion model show that it is possible that Ambrosia pollen could be derived from local sources identified within Denmark. Conclusions. The high allergenic capacity of Ambrosia pollen means that only small amounts of pollen are relevant for allergy sufferers, and just a few plants will be sufficient to produce enough pollen to affect pollen allergy sufferers within a short distance from the source. It is necessary to adopt control measures to restrict Ambrosia numbers. Recommendations for the removal of all Ambrosia plants can effectively reduce the amount of local pollen, as long as the population of Ambrosia plants is small.
Resumo:
Botrytis cinerea (Grey mould) is a necrotrophic fungus infecting over 230 plant species worldwide. It can cause major pre- and post-harvest diseases of many agronomic and horticultural crops. Botrytis cinerea causes annual economic losses of 10–100 billion US dollars worldwide and instability in the food supply (Jin and Wu, 2015). Grey mould losses, either at the farm gate or later in the food chain, could be reduced with improved knowledge of inoculum availability during production. In this paper, we report on the ability to monitor Botrytis spore concentration in glasshouse tomato production ahead of symptom development on plants. Using a light weight and portable air sampler (microtitre immunospore trap) it was possible to quantify inoculum availability within hours. Also, this study investigated the spatial aspect of the pathogen with an increase of B. cinerea concentration in bio-aerosols collected in the lower part of the glasshouse (0.5 m) and adjacent to the trained stems of the tomato plants. No obvious relationship was observed between B. cinerea concentration and the internal glasshouse environmental parameters of temperature and relative humidity. However the occurrence of higher outside wind speeds did increase the prevalence of B. cinerea conidia in the cropping environment of a vented glasshouse. Knowledge of inoculum availability at time periods when the environmental risk of pathogen infection is high should improve the targeted use and effectiveness of control inputs.