9 resultados para Winter season
em Worcester Research and Publications - Worcester Research and Publications - UK
Resumo:
In light of heightened interest in the response of pollen phenology to temperature, we investigated recent changes to the onset of Betula (birch) pollen seasons in central and southern England, including a test of predicted advancement of the Betula pollen season for London. We calculated onset of birch pollen seasons using daily airborne pollen data obtained at London, Plymouth and Worcester, determined trends in the start of the pollen season and compared timing of the birch pollen season with observed temperature patterns for the period 1995–2010. We found no overall change in the onset of birch pollen in the study period although there was evidence that the response to temperature was nonlinear and that a lower asymptotic start of the pollen season may exist. The start of the birch pollen season was strongly correlated with March mean temperature. These results reinforce previous findings showing that the timing of the birch pollen season in the UK is particularly sensitive to spring temperatures. The climate relationship shown here persists over both longer decadal-scale trends and shorter, seasonal trends as well as during periods of ‘sign-switching’ when cooler spring temperatures result in later start dates. These attributes, combined with the wide geographical coverage of airborne pollen monitoring sites, some with records extending back several decades, provide a powerful tool for the detection of climate change impacts, although local site factors and the requirement for winter chilling may be confounding factors.
Resumo:
Background Birch pollen is highly allergic and has the potential for episodically long range transport. Such episodes will in general occur out of the main pollen season. During that time allergy patients are unprotected and high pollen concentrations will therefore have a full allergenic impact. Objective To show that Denmark obtains significant quantities of birch pollen from Poland or Germany before the local trees start to flower. Methods Simultaneous observations of pollen concentrations and phenology in the potential source area in Poland as well as in Denmark were performed in 2006. The Danish pollen records from 2000-2006 were analysed for possible long range transport episodes and analysed with trajectories in combination with a birch tree source map. Results In 2006 high pollen concentrations were observed in Denmark with bi-hourly concentrations above 500 grains/ m3 before the local trees began to flower. Poland was identified as a source region. The analysis of the historical pollen record from Copenhagen shows significant pre-seasonal pollen episodes almost every year from 2000-2006. In all episodes trajectory analysis identified Germany or Poland as source regions. Conclusion Denmark obtains significant pre-seasonal quantities of birch pollen from either Poland or Germany almost every year. Forecasting of birch pollen quantities relevant to allergy patients must therefore take into account long-range transport. This cannot be based on measured concentrations in Denmark. The most effective way to improve the current Danish pollen forecasts is to extend the current forecasts with atmospheric transport models that take into account pollen emission and transport from countries such as Germany and Poland. Unless long range transport is taken into account pre-seasonal pollen episodes will have a full allergic impact, as the allergy patients in general will be unprotected during that time.
Resumo:
Previous work on Betula spp. (birch) in the UK and at five sites in Europe has shown that pollen seasons for this taxon have tended to become earlier by about 5–10 days per decade in most regions investigated over the last 30 years. This pattern has been linked to the trend to warmer winters and springs in recent years. However, little work has been done to investigate the changes in the pollen seasons for the early flowering trees. Several of these, such as Alnus spp. and Corylus spp., have allergens, which cross-react with those of Betula spp., and so have a priming effect on allergic people. This paper investigates pollen seasons for Alnus spp. and Corylus spp. for the years 1996–2005 at Worcester, in the West Midlands, United Kingdom. Pollen data for daily average counts were collected using a Burkard volumetric trap sited on the exposed roof of a three-storey building. The climate is western maritime. Meteorological data for daily temperatures (maximum and minimum) and rainfall were obtained from the local monitoring sites. The local area up to approximately 10 km surrounding the site is mostly level terrain with some undulating hills and valleys. The local vegetation is mixed farmland and deciduous woodland. The pollen seasons for the two taxa investigated are typically late December or early January to late March. Various ways of defining the start and end of the pollen seasons were considered for these taxa, but the most useful was the 1% method whereby the season is deemed to have started when 1% of the total catch is achieved and to have ended when 99% is reached. The cumulative catches (in grains/m3) for Alnus spp. varied from 698 (2001) to 3,467 (2004). For Corylus spp., they varied from 65 (2001) to 4,933 (2004). The start dates for Alnus spp. showed 39 days difference in the 10 years (earliest 2000 day 21, latest 1996 day 60). The end dates differed by 26 days and the length of season differed by 15 days. The last 4 years in the set had notably higher cumulative counts than the first 2, but there was no trend towards earlier starts. For Corylus spp. start days also differed by 39 days (earliest 1999 day 5, latest 1996 day 44). The end date differed by 35 days and length of season by 26 days. Cumulative counts and lengths of season showed a distinct pattern of alternative high (long) and low (short) years. There is some evidence of a synchronous pattern for Alnus spp.. These patterns show some significant correlations with temperature and rainfall through the autumn, winter and early spring, and some relationships with growth degree 4s and chill units, but the series is too short to discern trends. The analysis has provided insight to the variation in the seasons for these early flowering trees and will form a basis for future work on building predictive models for these taxa.
Resumo:
A 30-day ahead forecast method has been developed for grass pollen at north London. The total period of the grass pollen season is covered by eight multiple regression models, each covering a 10-day period running consecutively from 21st May to 8th August. This means that three models were used for each 30-day forecast. The forecast models were produced using grass pollen and environmental data from 1961-1999 and tested on data from 2000 and 2002. Model accuracy was judged in two ways: the number of times the forecast model was able to successfully predict the severity (relative to the 1961-1999 dataset as a whole) of grass pollen counts in each of the eight forecast periods on a scale of one to four; and the number of times the forecast model was able to predict whether grass pollen counts were higher or lower than the mean. The models achieved 62.5% accuracy in both assessment years when predicting the relative severity of grass pollen counts on a scale of one to four, which equates to six of the eight 10-day periods being forecast correctly. The models attained 87.5% and 100% accuracy in 2000 and 2002 respectively when predicting whether grass pollen counts would be higher or lower than the mean. Attempting to predict pollen counts during distinct 10-day periods throughout the grass pollen season is a novel approach. The models also employed original methodology in the use of winter averages of the North Atlantic Oscillation to forecast 10-day means of allergenic pollen counts.
Resumo:
A number of media outlets now issue medium-range (~7 day) weather forecasts on a regular basis. It is therefore logical that aerobiologists should attempt to produce medium-range forecasts for allergenic pollen that cover the same time period as the weather forecasts. The objective of this study is to construct a medium-range (< 7 day) forecast model for grass pollen at north London. The forecast models were produced using regression analysis based on grass pollen and meteorological data from 1990-1999 and tested on data from 2000 and 2002. The modelling process was improved by dividing the grass pollen season into three periods; the pre-peak, peak and post peak periods of grass pollen release. The forecast consisted of five regression models. Two simple linear regression models predicting the start and end date of the peak period, and three multiple regression models forecasting daily average grass pollen counts in the pre-peak, peak and post-peak periods. Overall the forecast models achieved 62% accuracy in 2000 and 47% in 2002, reflecting the fact that the 2002 grass pollen season was of a higher magnitude than any of the other seasons included in the analysis. This study has the potential to make a notable contribution to the field of aerobiology. Winter averages of the North Atlantic Oscillation were used to predict certain characteristics of the grass pollen season, which presents an important advance in aerobiological work. The ability to predict allergenic pollen counts for a period between five and seven days will benefit allergy sufferers. Furthermore, medium-range forecasts for allergenic pollen will be of assistance to the medical profession, including allergists planning treatment and physicians scheduling clinical trials.
Resumo:
Geographical and temporal variations in the start dates of grass pollen seasons are described for selected sites of the European Pollen Information Service. Daily average grass pollen counts are derived from Network sites in Finland, the Netherlands, Denmark, United Kingdom, Austria, Italy and Spain, giving a broad longitudinal transect over Western Europe. The study is part of a larger project that also examines annual and regional variations in the severity, timing of the peak and duration of the grass pollen seasons. For several sites, data are available for over twenty years enabling long term trends to be discerned. The analyses show notable contrasts in the progression of the seasons annually with differing lag times occurring between southern and northern sites in various years depending on the weather conditions. The patterns identified provide some insight into geographical differences and temporal trends in the incidence of pollinosis. The paper discusses the main difficulties involved in this type of analysis and notes possibilities for using data from the European Pollen Information service to construct pan European predictive models for pollen seasons.
Resumo:
Relationships between temporal variations in the North Atlantic Oscillation (NAO) and grass pollen counts at 13 sites in Europe, ranging from Córdoba in the South-West and Turku in the North-East, were studied in order to determine spatial differences in the amount of influence exerted by the NAO on the timing and magnitude of grass pollen seasons. There were a number of significant (p<0.05) relationships between the NAO and start dates of the grass pollen season at the 13 pollen-monitoring sites. The strongest associations were generally recorded near to the Atlantic coast. Several significant correlations also existed between winter averages of the NAO and grass pollen season severity. Traditional methods for predicting the start or magnitude of grass pollen seasons have centred on the use of local meteorological observations, but this study has shown the importance of considering large-scale patterns of climate variability like the NAO.
Resumo:
The main aim of this study was to analyse the temporal and spatial variations in grass (Poaceae) pollen counts (2005–2011) recorded in Évora (Portugal), Badajoz (Spain) and Worcester (UK). Weekly average data were examined using nonparametric statistics to compare differences between places. On average, Évora recorded the earliest start dates of the Poaceae pollen seasons and Worcester the latest. The intensity of the Poaceae pollen season varied between sites, with Worcester usually recording the least and Évora the most grass pollen in a season. Mean durations of grass pollen seasons were 77 days in Évora, 78 days in Badajoz and 59 days in Worcester. Overall, longer Poaceae pollen seasons coincided with earlier pollen season start dates. Weekly pollen data, from March to September, from the three pollen-monitoring stations studied were compared. The best fit and most statistically significant correlations were obtained by moving Worcester data backward by 4 weeks (Évora, r = 0.810, p < 0.001) and 5 weeks (Badajoz,r = 0.849, p < 0.001). Weekly data from Worcester therefore followed a similar pattern to that of Badajoz and Évora but at a distance of more than 1,500 km and 4–5 weeks later. The sum of pollen recorded in a season was compared with monthly rainfall between January and May. The strongest positive relationship between season intensity and rainfall was between the annual sum of Poaceae pollen recorded in the season at Badajoz and Évora and total rainfall during January and February. Winter rainfall noticeably affects the intensity of Poaceae pollen seasons in Mediterranean areas, but this was not as important in Worcester.
Resumo:
Allergies to grass pollen are the number one cause of outdoor hay fever. The human immune system reacts with symptoms to allergens from pollen. Objective: We investigated the natural variability in release of the major group 5 allergen from grass pollen across Europe. Methods: Airborne pollen and allergens were simultaneously collected daily with a volumetric spore trap and a high-volume cascade impactor at 10 sites across Europe for 3 consecutive years. Group 5 allergen was determined with a Phl p 5 specific ELISA in two fractions of ambient air: Particulate Matter (PM) >10μm and 10μm>PM>2.5μm. Mediator release by ambient air was determined in FcεR1-humanized basophils. Origin of pollen was modeled and condensed to pollen potency maps. Results: On average grass pollen released 2.3 pg Phl p 5/pollen. Allergen release per pollen (potency) varied substantially, ranging from 0 to 9 pg Phl p 5/pollen (5 to 95% percentile). The main variation was locally day-to-day. Average potency maps across Europe varied between years. Mediator release from basophilic granulocytes correlated better with allergen/m3 (r2=0.80, p<0.001) than with pollen/m3 (r2=0.61, p<0.001). In addition, pollen released different amounts of allergen in the nonpollen bearing fraction of ambient air depending on humidity. Conclusion: Across Europe, the same amount of pollen released substantially different amounts of group 5 grass pollen allergen. This variation in allergen release is on top of variations in pollen counts. Molecular aerobiology, i.e. determining allergen in ambient air, may be a valuable addition to pollen counting.