2 resultados para Water-borne diseases

em Worcester Research and Publications - Worcester Research and Publications - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oomycete diseases cause significant losses across a broad range of crop and aquaculture commodities worldwide. These losses can be greatly reduced by disease management practices steered by accurate and early diagnoses of pathogen presence. Determinations of disease potential can help guide optimal crop rotation regimes, varietal selections, targeted control measures, harvest timings and crop post-harvest handling. Pathogen detection prior to infection can also reduce the incidence of disease epidemics. Classical methods for the isolation of oomycete pathogens are normally deployed only after disease symptom appearance. These processes are often-time consuming, relying on culturing the putative pathogen(s) and the availability of expert taxonomic skills for accurate identification; a situation that frequently results in either delayed application, or routine ‘blanket’ over-application of control measures. Increasing concerns about pesticides in the environment and the food chain, removal or restriction of their usage combined with rising costs have focussed interest in the development and improvement of disease management systems. To be effective, these require timely, accurate and preferably quantitatve diagnoses. A wide range of rapid diagnostic tools, from point of care immunodiagnostic kits to next generation nucleotide sequencing have potential application in oomycete disease management. Here we review currently-available as well as promising new technologies in the context of commercial agricultural production systems, considering the impacts of specific biotic and abiotic and other important factors such as speed and ease of access to information and cost effectiveness

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The numbers of water-borne oomycete propagules in outdoor reservoirs used in horticultural nurseries within the UK are investigated in this study. Water samples were recovered from 11 different horticultural nurseries in the southern UK during Jan-May in two ‘cool’ years (2010.and 2013; winter temperatures 2.0 and 0.4oC below UK Met Office 30 year winter average respectively) and two ‘warm’ years (2008 and 2012; winter temperatures 1.2 and 0.9oC above UK Met Office 30 year winter average respectively). Samples were analysed for total number of oomycete colony forming units (CFU), predominantly members of the families Saprolegniaceae and Pythiaceae, and these were combined to give monthly mean counts. The numbers of CFU were investigated with respect to prevailing climate in the region: mean monthly air temperatures calculated by using daily observations from the nearest climatological station. The investigations show that the number of CFU during spring can be explained by a linear first-order equation and a statistically significant r2 value of 0.66 with the simple relationship: [CFU] = a(T-Tb )-b, where a is the rate of inoculum development with temperature T, and b is the baseload population at temperatures below Tb. Despite the majority of oomycete CFU detected being non-phytopathogenic members of the Saprolegniaceae, total oomycete CFU counts are still of considerable value as indicators of irrigation water treatment efficacy and cleanliness of storage tanks. The presence/absence of Pythium spp. was also determined for all samples tested, and Pythium CFU were found to be present in the majority, the exceptions all being particularly cold months (January and February 2010 and January 2008). A simple scenario study (+2 deg C) suggests that abundance of water-borne oomycetes during spring could be affected by increased temperatures due to climate change.