5 resultados para Ultracold traps
em Worcester Research and Publications - Worcester Research and Publications - UK
Resumo:
Two of the most frequently used methods of pollen counting on slides from Hirst type traps are evaluated in this paper: the transverse traverse method and the longitudinal traverse method. The study was carried out during June–July 1996 and 1997 on slides from a trap at Worcester, UK. Three pollen types were selected for this purpose: Poaceae, Urticaceae and Quercus. The statistical results show that the daily concentrations followed similar trends (p < 0.01, R-values between 0.78–0.96) with both methods during the two years, although the counts were slightly higher using the longitudinal traverses method. Significant differences were observed, however, when the distribution of the concentrations during 24 hour sampling periods was considered. For more detailed analysis, the daily counts obtained with both methods were correlated with the total number of pollen grains for the taxon over the whole slide, in two different situations: high and low concentrations of pollen in the atmosphere. In the case of high concentrations, the counts for all three taxa with both methods are significantly correlated with the total pollen count. In the samples with low concentrations, the Poaceae and Urticaceae counts with both methods are significantly correlated with the total counts, but none of Quercus counts are. Consideration of the results indicates that both methods give a reasonable approximation to the count derived from the slide as a whole. More studies need be done to explore the comparability of counting methods in order to work towards a Universal Methodology in Aeropalynology.
Resumo:
Background: The pollen grains of Ambrosia spp. are considered to be important aeroallergens. Previous studies have shown that the long-range transport of Ambrosia pollen to Poland is intermittent and mainly related to the passage of air masses over the Carpathian and Sudetes mountains from sources to the south, e.g. the Czech Republic, Slovakia and Hungary. In this study, Ambrosia pollen counts and back-trajectories from specific episodes in 1999 and 2002 have been analysed with the aim of identifying possible new sources of Ambrosia pollen arriving at three sites in Poland. Method: The combination of Ambrosia pollen measurements (daily average and bi-hourly concentrations) and air mass trajectory calculations were used to investigate two Ambrosia pollen episodes recorded at Rzeszow, Krakow and Poznań on the 4th and 5th September 1999 and 3rd September 2002. Ambrosia pollen counts were recorded by volumetric spore traps of the Hirst design. Trajectories were calculated using the transport model within the Lagrangian air pollution model, ACDEP (Atmospheric Chemistry and Deposition). Results: The collective results of pollen measurements and back-trajectory analysis indicate plumes of Ambrosia pollen travelling up through Poland from the southeast during the investigated episodes. In 1999, the plume was first recorded at Rzeszow in Southeastern Poland during the morning of the 4th September. Its route can be followed as it passed Krakow during the afternoon of the 4th, and later on the 4th and 5th September at Poznań. Similarly, back-trajectories calculated during the morning and afternoon from Krakow and Rzeszow on the 3rd September 2002 indicates that the air masses arrived at these sites from the East or Southeast. Conclusion: This study shows the progress of Ambrosia plumes into Poland from the southeast. Ambrosia pollen release occurs mainly during the day and so a midday peak in Ambrosia pollen concentrations may indicate a local source. However, if the plume of Ambrosia pollen tracked along its northwesterly path over Poland during investigated episodes did not originate from inside Poland, then it is likely that it came from the Ukraine. This identifies a possible new source of ragweed pollen for Poland. Trajectory analysis can only show the path along which an air mass travels, not the specific source area. Further investigation could therefore include source based transport models such as 3D Eulerian atmospheric transport models.
Resumo:
Exposure to allergens is pivotal in determining sensitization and allergic symptoms in individuals. Pollen grain counts in ambient air have traditionally been assessed to estimate airborne allergen exposure. However, the exact allergen content of ambient air is unknown. We therefore monitored atmospheric concentrations of birch pollen grain and the matched major birch pollen allergen Bet v 1 simultaneously across Europe within the EU-funded project HIALINE (Health Impacts of Airborne Allergen Information Network). Pollen count was assessed with Hirst type pollen traps at 10 l/min at sites in France, United Kingdom, Germany, Italy and Finland. Allergen concentrations in ambient air were sampled at 800l/min with a Chemvol high-volume cascade impactor equipped with stages PM>10μm, 10 μm>PM>2.5μm, and in Germany also 2.5 μm>PM>0.12μm. The major birch pollen allergen Bet v 1 was determined with an allergen specific ELISA. Bet v 1 isoform patterns were analyzed by 2D-SDS-PAGE blots and mass spectrometric identification. Basophil activation was tested in an FcεR1-humanized rat basophil cell line passively sensitized with serum of a birch pollen lmptomatic patient. Compared to 10 previous years, 2009 was a representative birch pollen season for all stations. About 90% of the allergen was found in the PM>10μm fraction at all stations. Bet v 1 isoforms pattern did not varied substantially neither during ripening of pollen nor between different geographical locations. The average European allergen release from birch pollen was 3.2 pg Bet v 1/pollen and did not vary much between the European countries. However, in all countries a >10-fold difference in daily allergen release per pollen was measured which could be explained by long range transport of pollen with a deviating allergen release. Basophil activation by ambient air extracts correlated better with airborne allergen than with pollen concentration. Although Bet v 1 is a mixture of different isoforms, its fingerprint is constant across Europe. Bet v 1 was also exclusively linked to pollen. Pollen from different days varied >10-fold in allergen release. Thus exposure to allergen is inaccurately monitored by only monitoring birch pollen grains. Indeed, a humanized basophil activation test correlated much better with allergen concentrations in ambient air than with pollen count. Monitoring the allergens themselves together with pollen in ambient air might be an improvement in allergen exposure assessment.
Resumo:
Pollen is routinely monitored, but it is unknown whether pollen counts represent allergen exposure. We therefore simultaneously determined olive pollen and Ole e 1 in ambient air in C"ordoba, Spain, and "Evora, Portugal, using Hirst-type traps for pollen and high-volume cascade impactors for allergen. Pollen from different days released 12-fold different amounts of Ole e 1 per pollen (both locations P < 0.001). Average allergen release from pollen (pollen potency) was much higher in C"ordoba (3.9 pg Ole e 1/pollen) than in "Evora (0.8 pg Ole e 1/pollen, P = 0.004). Indeed, yearly olive pollen counts in C"ordoba were 2.4 times higher than in "Evora, but Ole e 1 concentrations were 7.6 times higher. When modeling the origin of the pollen, >40% of Ole e 1 exposure in "Evora was explained by high-potency pollen originating from the south of Spain. Thus, olive pollen can vary substantially in allergen release, even though they are morphologically identical.
Resumo:
This study represents the first international intercomparison of fungal spore observations since 1990, focusing on atmospheric concentrations of Alternaria, Cladosporium, Ganoderma and Didymella spores. The campaigns were performed at sites located in Cork (Ireland) and Worcester (England) during summer 2010. Observations were made using Hirst-type volumetric spore traps and corresponding optical identification at the genus level by microscope. The measurements at both sites (including meteorological parameters) were compared and contrasted. The relationships between the fungal spore concentrations with selected meteorological parameters were investigated using statistical methods and multivariate regression trees (MRT). The results showed high correlations between the two sites with respect to daily variations. Statistically significant higher spore concentrations for Alternaria, Cladosporium and Ganoderma were monitored at the Worcester site. This result was most likely due to the differences in precipitation and local fungal spore sources at the two sites. Alternaria and Cladosporium reached their maxima a month earlier in Cork than in Worcester, and Didymella with Ganoderma peaked simultaneously with similar diurnal trends found for all the investigated spore types. MRT analysis helped to determine threshold values of the meteorological parameters that exerted most influence on the presence of spores: they were found to vary at the two sites. Our results suggest that the aeromycological profile is quite uniform over the British Isles, but a description of bioaerosols with respect to overall load and daily concentration can be quite diverse although the geographical difference between sites is relatively small. These variations in the concentrations therefore need to be explored at the national level