2 resultados para Two dimensions

em Worcester Research and Publications - Worcester Research and Publications - UK


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The power of computer game technology is currently being harnessed to produce “serious games”. These “games” are targeted at the education and training marketplace, and employ various key game-engine components such as the graphics and physics engines to produce realistic “digital-world” simulations of the real “physical world”. Many approaches are driven by the technology and often lack a consideration of a firm pedagogical underpinning. The authors believe that an analysis and deployment of both the technological and pedagogical dimensions should occur together, with the pedagogical dimension providing the lead. This chapter explores the relationship between these two dimensions, and explores how “pedagogy may inform the use of technology”, how various learning theories may be mapped onto the use of the affordances of computer game engines. Autonomous and collaborative learning approaches are discussed. The design of a serious game is broken down into spatial and temporal elements. The spatial dimension is related to the theories of knowledge structures, especially “concept maps”. The temporal dimension is related to “experiential learning”, especially the approach of Kolb. The multi-player aspect of serious games is related to theories of “collaborative learning” which is broken down into a discussion of “discourse” versus “dialogue”. Several general guiding principles are explored, such as the use of “metaphor” (including metaphors of space, embodiment, systems thinking, the internet and emergence). The topological design of a serious game is also highlighted. The discussion of pedagogy is related to various serious games we have recently produced and researched, and is presented in the hope of informing the “serious game community”.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coupled map lattices (CML) can describe many relaxation and optimization algorithms currently used in image processing. We recently introduced the ‘‘plastic‐CML’’ as a paradigm to extract (segment) objects in an image. Here, the image is applied by a set of forces to a metal sheet which is allowed to undergo plastic deformation parallel to the applied forces. In this paper we present an analysis of our ‘‘plastic‐CML’’ in one and two dimensions, deriving the nature and stability of its stationary solutions. We also detail how to use the CML in image processing, how to set the system parameters and present examples of it at work. We conclude that the plastic‐CML is able to segment images with large amounts of noise and large dynamic range of pixel values, and is suitable for a very large scale integration(VLSI) implementation.