11 resultados para Trajectories

em Worcester Research and Publications - Worcester Research and Publications - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose here the hypothesis that all of United Kingdom (UK) is likely to be affected by Ganoderma sp. spores, an important plant pathogen. We suggest that the main sources of this pathogen, which acts as a bioaerosol, are the widely scattered woodlands in the country, although remote sources must not be neglected. The hypothesis is based on related studies on bioaerosols and supported by new observations from a non-forest site and model calculations to support our hypothesis. Hourly concentrations of Ganoderma sp. spores were measured from 2006 to 2010 using a 7-day volumetric spore trap at the city of Worcester. The concentrations peak during the night and early in the morning. This suggests that the main spore sources are located a few hours away with respect to air masses transport and reach urban areas thanks to air masses transport. The back-trajectory analysis was applied to determine the location of Ganoderma sp. spore sources. The analysis of back-trajectories demonstrated that 78% of the air masses reached Worcester from a 180° arc direction from the East to West. Three episodes were selected for detailed investigation and they revealed that during the episodes air masses always passed main UK woodlands before the arrival in Worcester, independently of their origin, but the long distance transport under certain conditions might be possible. Our studies suggest that the sources of UK Ganoderma sp. spores are mainly to be found in UK. Hence our studies suggest that research and mitigation strategies in UK should give their main attention to national sources, without neglecting the contribution from long distance transport.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Airborne pollen transport at micro-, meso-gamma and meso-beta scales must be studied by atmospheric models, having special relevance in complex terrain. In these cases, the accuracy of these models is mainly determined by the spatial resolution of the underlying meteorological dataset. This work examines how meteorological datasets determine the results obtained from atmospheric transport models used to describe pollen transport in the atmosphere. We investigate the effect of the spatial resolution when computing backward trajectories with the HYSPLIT model. We have used meteorological datasets from the WRF model with 27, 9 and 3 km resolutions and from the GDAS files with 1 ° resolution. This work allows characterizing atmospheric transport of Olea pollen in a region with complex flows. The results show that the complex terrain affects the trajectories and this effect varies with the different meteorological datasets. Overall, the change from GDAS to WRF-ARW inputs improves the analyses with the HYSPLIT model, thereby increasing the understanding the pollen episode. The results indicate that a spatial resolution of at least 9 km is needed to simulate atmospheric flows that are considerable affected by the relief of the landscape. The results suggest that the appropriate meteorological files should be considered when atmospheric models are used to characterize the atmospheric transport of pollen on micro-, meso-gamma and meso-beta scales. Furthermore, at these scales, the results are believed to be generally applicable for related areas such as the description of atmospheric transport of radionuclides or in the definition of nuclear-radioactivity emergency preparedness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Birch pollen is highly allergic and has the potential for episodically long range transport. Such episodes will in general occur out of the main pollen season. During that time allergy patients are unprotected and high pollen concentrations will therefore have a full allergenic impact. Objective To show that Denmark obtains significant quantities of birch pollen from Poland or Germany before the local trees start to flower. Methods Simultaneous observations of pollen concentrations and phenology in the potential source area in Poland as well as in Denmark were performed in 2006. The Danish pollen records from 2000-2006 were analysed for possible long range transport episodes and analysed with trajectories in combination with a birch tree source map. Results In 2006 high pollen concentrations were observed in Denmark with bi-hourly concentrations above 500 grains/ m3 before the local trees began to flower. Poland was identified as a source region. The analysis of the historical pollen record from Copenhagen shows significant pre-seasonal pollen episodes almost every year from 2000-2006. In all episodes trajectory analysis identified Germany or Poland as source regions. Conclusion Denmark obtains significant pre-seasonal quantities of birch pollen from either Poland or Germany almost every year. Forecasting of birch pollen quantities relevant to allergy patients must therefore take into account long-range transport. This cannot be based on measured concentrations in Denmark. The most effective way to improve the current Danish pollen forecasts is to extend the current forecasts with atmospheric transport models that take into account pollen emission and transport from countries such as Germany and Poland. Unless long range transport is taken into account pre-seasonal pollen episodes will have a full allergic impact, as the allergy patients in general will be unprotected during that time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pollen grains of Ambrosia spp. are considered to be important aeroallergens in parts of southern and central Europe. Back-trajectories have been analysed with the aim of finding the likely sources of Ambrosia pollen grains that arrived at Poznań (Poland). Temporal variations in Ambrosia pollen at Poznań from 1995–2005 were examined in order to identify Ambrosia pollen episodes suitable for further investigation using back-trajectory analysis. The trajectories were calculated using the transport model within the Lagrangian air pollution model, ACDEP (Atmospheric Chemistry and Deposition). Analysis identified two separate populations in Ambrosia pollen episodes, those that peaked in the early morning between 4 a.m. and 8 a.m., and those that peaked in the afternoon between 2 p.m. and 6 p.m.. Six Ambrosia pollen episodes between 2001 and 2005 were examined using backtrajectory analysis. The results showed that Ambrosia pollen episodes that peaked in the early morning usually arrived at Poznań from a southerly direction after passing over southern Poland, the Czech Republic, Slovakia and Hungary, whereas air masses that brought Ambrosia pollen to Poznań during the afternoon arrived from a more easterly direction and predominantly stayed within the borders of Poland. Back-trajectory analysis has shown that there is a possibility that long-range transport brings Ambrosia pollen to Poznań from southern Poland, the Czech Republic, Slovakia and Hungary. There is also a likelihood that Ambrosia is present in Poland, as shown by the arrival of pollen during the afternoon that originated primarily from within the country.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trajectory analysis is a valuable tool that has been used before in aerobiological studies, to investigate the movement of airborne pollen. This study has employed back-trajectories to examine the four highest grass pollen episodes at Worcester, during the 2001 grass pollen season. The results have shown that the highest grass pollen counts of the 2001 season were reached when air masses arrived from a westerly direction. Back-trajectory analysis has a limited value to forecasters because the method is retrospective and cannot be employed directly for forecasting. However, when used in conjunction with meteorological data this technique can be used to examine high magnitude events in order to identify conditions that lead to high pollen counts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The long-range transport of Ambrosia pollen to Poland is intermittent and mainly related to the passage of air masses over the Carpathian and Sudetes mountains. These episodes are associated with hot dry weather, a deep Planetary Boundary Layer (PBL) in the source areas and winds from the south. Such episodes can transport significant amounts of Ambrosia pollen into Poland. The study investigates Ambrosia pollen episodes at eight sites in Poland during the period 7th to 10th September 2005, by examining temporal variations in Ambrosia pollen and back-trajectories. PBL depths in the likely source areas were calculated with the Eta meteorological model and evaluated against the mountain heights. Considerable amounts of Ambrosia pollen were recorded at several monitoring sites during the night or early in the morning of the investigated period. Trajectory analyses shows that the air masses arriving at the Polish sites predominantly came from the south, and were in the Czech Republic, Slovakia and Hungary the previous day indicating these countries as potential source areas. We have shown the progress of Ambrosia plumes into Poland from the south of the country, probably from Slovakia and Hungary, and demonstrated how Lagrangian back-trajectory models and meteorological models can be used to identify possible transport mechanisms of Ambrosia pollen from potential source regions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study aims to find likely sources of Ambrosia pollen recorded during 2007 at five pollen-monitoring sites in central Europe, Novi Sad, Ruma, Negotin and Nis (Serbia) and Skopje (Macedonia). Ambrosia plants start flowering early in the morning and so Ambrosia pollen grains recorded during the day are likely to be from a local source. Conversely, Ambrosia pollen grains recorded at night or very early in the morning may have arrived via long-range transport. Ambrosia pollen counts were analysed in an attempt to find possible sources of the pollen and to identify Ambrosia pollen episodes suitable for further investigation using back-trajectory analysis. Diurnal variations and the magnitude of Ambrosia pollen counts during the 2007 Ambrosia pollen season showed that Novi Sad and Ruma (Pannonian Plain) and to a lesser degree Negotin (Balkans) were located near to sources of Ambrosia pollen. Mean bi-hourly Ambrosia pollen concentrations peaked during the middle of the day and concentrations at these sites were notably higher than at Nis and Skopje. Three episodes were selected for further analysis using back-trajectory analysis. Back-trajectories showed that air masses brought Ambrosia pollen from the north to Nis and, on one occasion, to Skopje (Balkans) during the night and early morning after passing to the east of Novi Sad and Ruma during the previous day. The results of this study identified the Southern part of the Pannonian Plain around Novi Sad and Ruma as being a potential source region for Ambrosia pollen recorded at Nis and Skopje in the Balkans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: The pollen grains of Ambrosia spp. are considered to be important aeroallergens. Previous studies have shown that the long-range transport of Ambrosia pollen to Poland is intermittent and mainly related to the passage of air masses over the Carpathian and Sudetes mountains from sources to the south, e.g. the Czech Republic, Slovakia and Hungary. In this study, Ambrosia pollen counts and back-trajectories from specific episodes in 1999 and 2002 have been analysed with the aim of identifying possible new sources of Ambrosia pollen arriving at three sites in Poland. Method: The combination of Ambrosia pollen measurements (daily average and bi-hourly concentrations) and air mass trajectory calculations were used to investigate two Ambrosia pollen episodes recorded at Rzeszow, Krakow and Poznań on the 4th and 5th September 1999 and 3rd September 2002. Ambrosia pollen counts were recorded by volumetric spore traps of the Hirst design. Trajectories were calculated using the transport model within the Lagrangian air pollution model, ACDEP (Atmospheric Chemistry and Deposition). Results: The collective results of pollen measurements and back-trajectory analysis indicate plumes of Ambrosia pollen travelling up through Poland from the southeast during the investigated episodes. In 1999, the plume was first recorded at Rzeszow in Southeastern Poland during the morning of the 4th September. Its route can be followed as it passed Krakow during the afternoon of the 4th, and later on the 4th and 5th September at Poznań. Similarly, back-trajectories calculated during the morning and afternoon from Krakow and Rzeszow on the 3rd September 2002 indicates that the air masses arrived at these sites from the East or Southeast. Conclusion: This study shows the progress of Ambrosia plumes into Poland from the southeast. Ambrosia pollen release occurs mainly during the day and so a midday peak in Ambrosia pollen concentrations may indicate a local source. However, if the plume of Ambrosia pollen tracked along its northwesterly path over Poland during investigated episodes did not originate from inside Poland, then it is likely that it came from the Ukraine. This identifies a possible new source of ragweed pollen for Poland. Trajectory analysis can only show the path along which an air mass travels, not the specific source area. Further investigation could therefore include source based transport models such as 3D Eulerian atmospheric transport models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

VITAE was a four-year research project designed to explore the work and lives of a purposive sample of 300 Key Stage 1, 2 and 3 (English and maths) teachers at different phases of their careers in 100 primary and secondary schools in different socioeconomic contexts, drawn from seven local authorities in England. Its focus was upon identifying variations in different aspects of teachers' lives and work and examining possible connections between these and their effects on pupils as perceived by the teachers themselves and as measured by value-added national test scores. An integrated mixed-method approach was developed in addressing the research questions. The results showed that there were associations between teachers' work, lives and identities, that teachers' perceived and relative (valueadded) effectiveness varied within each of six professional life phases, and that this variation depended upon their capacity to manage a number of moderating and mediating factors. Statistically significant relationships were found between teacher commitment, resilience and the value-added pupil test scores. The findings from the study shed new light upon the meanings and measurement of teacher effectiveness and the complex nature and trajectories of teachers' work, lives and effectiveness in different school contexts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There are many species among the Alternaria genus, which hosts on economically important crops causing significant yield losses. Less attention has been paid to fungi hosting on plants constituting substantial components of pastures and meadows. Alternaria spp. spores are also recognised as important allergens. A 7-day volumetric spore trap was used to monitor the concentration of airborne fungal spores. Air samples were collected in Worcester, England (2006–2010). Days with a high spore count were then selected. The longest episode that occurred within a five year study was chosen for modelling. Two source maps presenting distribution of crops under rotation and pastures in the UK were produced. Back trajectories were calculated using the HYSPLIT model. In ArcGIS clusters of trajectories were studied in connection with source maps by including the height above ground level and the speed of the air masses. During the episode no evidence for a long distance transport from the continent of Alternaria spp. spores was detected. The overall direction of the air masses fell within the range from South-West to North. The back trajectories indicated that the most important sources of Alternaria spp. spores were located in the West Midlands of England.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: The invasive alien species Ambrosia artemisiifolia (common or short ragweed) is increasing its range in Europe. In the UK and the Netherlands airborne concentrations of Ambrosia pollen are usually low. However, more than 30 Ambrosia pollen grains per cubic metre of air (above the level capable to trigger allergic symptoms) were recorded in Leicester (UK) and Leiden (NL) on 4 and 5 September 2014. Objective: The aims of this study were to determine whether the highly allergenic Ambrosia pollen recorded during the episode could be the result of long distance transport, to identify the potential sources of these pollen grains and describe the conditions that facilitated this possible long distance transport. Methods: Airborne Ambrosia pollen data were collected at 10 sites in Europe. Back trajectory and atmospheric dispersion calculations were performed using HYSPLIT_4. Results: Back trajectories calculated at Leicester and Leiden show that higher altitude air masses (1500m) originated from source areas on the Pannonian Plain and Ukraine. During the episode, air masses veered to the west and passed over the Rhône Valley. Dispersion calculations showed that the atmospheric conditions were suitable for Ambrosia pollen released from the Pannonian Plain and the Rhône Valley to reach the higher levels and enter the air stream moving to Northwest Europe where they were deposited at ground level and recorded by monitoring sites. Conclusions: The study indicates that the Ambrosia pollen grains recorded during the episode in Leicester and Leiden were probably not produced by local sources, but transported long distances from potential source regions in East Europe, i.e. the Pannonian Plain and Ukraine, as well as the Rhône Valley in France.