2 resultados para Technological forecasting
em Worcester Research and Publications - Worcester Research and Publications - UK
Resumo:
The meteorological and chemical transport model WRF-Chem was implemented to forecast PM10 concentrations over Poland. WRF-Chem version 3.5 was configured with three one way nested domains using the GFS meteorological data and the TNO MACC II emissions. Forecasts, with 48h lead time, were run for a winter and summer period 2014. WRF-Chem in general captures the variability in observed PM10 concentrations, but underestimates some peak concentrations during winter-time. The peaks coincide with either stable atmospheric condition during nighttime in the lower part of the planetary boundary layer or on days with very low surface temperatures. Such episodes lead to increased combustion in residential heating, where hard coal is the main fuel in Poland. This suggests that a key to improvement in the model performance for the peak concentrations is to focus on the simulation of PBL processes and the distribution of emissions with high resolution in WRF-Chem.
Resumo:
High concentration levels of Ganoderma spp. spores were observed in Worcester, UK, during 2006–2010.These basidiospores are known to cause sensitization due to
the allergen content and their small dimensions. This enables them to penetrate the lower part of the respiratory tract in humans. Establishment of a link between occurring symptoms of sensitization to Ganoderma spp. and other basidiospores is challenging due to lack of information regarding spore concentration in the air. Hence, aerobiological monitoring should be conducted, and if possible extended with the construction of forecast models. Daily mean concentration of allergenic Ganoderma spp. spores in the atmosphere of Worcester was measured using 7-day volumetric spore sampler through five consecutive years. The relationships between the presence of spores in the air and the weather parameters were examined. Forecast models were constructed for Ganoderma spp. spores using advanced statistical techniques, i.e. multivariate regression trees and artificial neural networks. Dew point temperature along with maximumtemperature was the most important factor influencing the presence of spores in the air of Worcester. Based on these two major factors and several others of lesser importance, thresholds for certain levels of fungal spore concentration, i.e. low (0–49 s m−3), moderate(50–99 s m−3), high (100–149 s m−3) and very high (150