4 resultados para TGM concentration in air

em Worcester Research and Publications - Worcester Research and Publications - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

High concentration levels of Ganoderma spp. spores were observed in Worcester, UK, during 2006–2010.These basidiospores are known to cause sensitization due to the allergen content and their small dimensions. This enables them to penetrate the lower part of the respiratory tract in humans. Establishment of a link between occurring symptoms of sensitization to Ganoderma spp. and other basidiospores is challenging due to lack of information regarding spore concentration in the air. Hence, aerobiological monitoring should be conducted, and if possible extended with the construction of forecast models. Daily mean concentration of allergenic Ganoderma spp. spores in the atmosphere of Worcester was measured using 7-day volumetric spore sampler through five consecutive years. The relationships between the presence of spores in the air and the weather parameters were examined. Forecast models were constructed for Ganoderma spp. spores using advanced statistical techniques, i.e. multivariate regression trees and artificial neural networks. Dew point temperature along with maximumtemperature was the most important factor influencing the presence of spores in the air of Worcester. Based on these two major factors and several others of lesser importance, thresholds for certain levels of fungal spore concentration, i.e. low (0–49 s m−3), moderate(50–99 s m−3), high (100–149 s m−3) and very high (150in results obtained by artificial neural networks, authors have achieved a forecasting model, which was accurate (correlation between observed and predicted values varied from rs=0.57 to rs=0.68).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ecological studies that examine species-environment relationships are often limited to several meteorological parameters, i.e. mean air temperature, relative humidity, precipitation, vapour pressure deficit and solar radiation. The impact of local wind, its speed and direction are less commonly investigated in aerobiological surveys mainly due to difficulties related to the employment of specific analytical tools and interpretation of their outputs. Identification of inoculum sources of economically important plant pathogens, as well as highly allergenic bioaerosols like Cladosporium species, has not been yet explored with remote sensing data and atmospheric models such as Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT). We, therefore, performed an analysis of 24 h intra-diurnal cycle of Cladosporium spp. spores from an urban site in connection with both the local wind direction and overall air mass direction computed by HYSPLIT. The observational method was a volumetric air sampler of the Hirst design with 1 h time resolution and corresponding optical detection of fungal spores with light microscopy. The atmospheric modelling was done using the on-line data set from GDAS with 1° resolution and circular statistical methods. Our results showed stronger, statistically significant correlation (p ≤ 0.05) between high Cladosporium spp. spore concentration and air mass direction compared to the local wind direction. This suggested that a large fraction of the investigated fungal spores had a regional origin and must be located more than a few kilometers away from the sampling point.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Future changes in population exposures to ambient air pollution are inherently linked with long-term trends in outdoor air quality, but also with changes in the building stock. Moreover, the burden of disease is further driven by the ageing of the European populations. This study aims to assess the impact of changes in climate, emissions, building stocks and population on air pollution related human health impacts across Europe in the future. Therefore an integrated assessment model combining atmospheric models and health impacts has been setup for projections of the future developments in air pollution related premature mortality. The focus is here on the regional scale impacts of exposure to surface ozone (O3), Secondary Inorganic Aerosols (SIA) and primary particulate matter (PPM).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Botrytis cinerea (Grey mould) is a necrotrophic fungus infecting over 230 plant species worldwide. It can cause major pre- and post-harvest diseases of many agronomic and horticultural crops. Botrytis cinerea causes annual economic losses of 10–100 billion US dollars worldwide and instability in the food supply (Jin and Wu, 2015). Grey mould losses, either at the farm gate or later in the food chain, could be reduced with improved knowledge of inoculum availability during production. In this paper, we report on the ability to monitor Botrytis spore concentration in glasshouse tomato production ahead of symptom development on plants. Using a light weight and portable air sampler (microtitre immunospore trap) it was possible to quantify inoculum availability within hours. Also, this study investigated the spatial aspect of the pathogen with an increase of B. cinerea concentration in bio-aerosols collected in the lower part of the glasshouse (0.5 m) and adjacent to the trained stems of the tomato plants. No obvious relationship was observed between B. cinerea concentration and the internal glasshouse environmental parameters of temperature and relative humidity. However the occurrence of higher outside wind speeds did increase the prevalence of B. cinerea conidia in the cropping environment of a vented glasshouse. Knowledge of inoculum availability at time periods when the environmental risk of pathogen infection is high should improve the targeted use and effectiveness of control inputs.