9 resultados para Stele (Botany)

em Worcester Research and Publications - Worcester Research and Publications - UK


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Airborne concentrations of Poaceae pollen have been monitored in Poznań for more than ten years and the length of the dataset is now considered sufficient for statistical analysis. The objective of this paper is to produce long-range forecasts that predict certain characteristics of the grass pollen season (such as the start, peak and end dates of the grass pollen season) as well as short-term forecasts that predict daily variations in grass pollen counts for the next day or next few days throughout the main grass pollen season. The method of forecasting was regression analysis. Correlation analysis was used to examine the relationship between grass pollen counts and the factors that affect its production, release and dispersal. The models were constructed with data from 1994-2004 and tested on data from 2005 and 2006. The forecast models predicted the start of the grass pollen season to within 2 days and achieved 61% and 70% accuracy on a scale of 1-4 when forecasting variations in daily grass pollen counts in 2005 and 2006 respectively. This study has emphasised how important the weather during the few weeks or months preceding pollination is to grass pollen production, and draws attention to the importance of considering large-scale patterns of climate variability (indices of the North Atlantic Oscillation) when constructing forecast models for allergenic pollen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cell cycle comprise the four phases of, G1, S-phase, G2 and mitosis. Two critical transitions are G1/S and G2/M; the latter is regulated by WEE1 kinase and CDC25 phosphatases. The scope of this thesis was to investigate the regulation of the G2/M transition of the cell cycle by WEE1 and CDC25, and how these genes interface with plant growth regulators in Arabidopsis thaliana. In Arabidopsis roots, the frequency of lateral roots was found to be increased by ectopic expression of Schizosaccharomyces pombe (Sp)cdc25e and reduced by Arath;WEE1 expression. I examined the effect of Arath;WEE1 and Spcdc25 on induction of shoots and roots in Arabidopsis hypocotyls in vitro. Hypocotyl explants from two over-expressing WEE1 lines , three T-DNA insertion lines and two expressing cdc25 (Spcdc25e) lines together with wild type (WT) were cultured on two-way gradients of kinetin (Kin) and naphthyl acetic acid (NAA). Below a threshold concentration of NAA (100 ng ml-1), WEE1 repressed morphogenesis in vitro, whereas at all NAA/Kin combinations Spcdc25 promoted morphogenesis (particularly root formation) over and above that in WT. Loss of function wee1-1 cultures were very similar to WT. Quantitative data indicated a significant increase in the frequency of root formation in Spcdc25e cultures compared with WT particularly at low Kin concentrations, and WEE1oe’s repressive effect was overcome by NAA but not Kin. In conclusion, WEE1 has a repressive effect on morphogenesis in vitro that can be overcome by auxin whereas Spcd25 by-passes a cytokinin requirement for the induction of morphogenesis in vitro. The role of CDC25 and WEE1 in DNA damage responses was also analysed. Two over-expressing Arath;CDC25 lines and T-DNA mutants showed no difference to WT either in standard conditions or zeocin-supplemented treatments. However, root length was longer in Arath;CDC25oe lines treated with hydroxyurea (HU) and lateral root number was increased compared to WT. This suggests a differential response of Arath;CDC25oe in the DNA replication (HU-induced) and DNA damage (zeocin-induced) checkpoints (Chapter 5). Finally the roles of WEE1 and CDC25 in cell cycle regulation were examined using tobacco TBY-2 cell cultures expressing Arath;WEE1, Nicotiana tabacum (Nicta)WEE1 or Arath;CDC25. Whilst Nicta;WEE1 lengthened G2 of the cell cycle, Arath;WEE1 had an unusual effect of shortening G2 phase and Arath;CDC25 had no observable effect (Chapter 6).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present here a simple methodology for calculating species inventories for allergenic pollen that can be used by atmospheric transport models. Ragweed (Ambrosia) species distribution or infection level on the Pannonian Plain has been used as an example of how the methodology can be used. The Pannonian Plain is one of the three main regions in Europe recognized as being polluted by Ambrosia. The methodology relies on spatial variations in annual Ambrosia pollen counts, knowledge on ragweed ecology and detailed land cover information. The results of this analysis showed that some of the highest mean annual ragweed pollen concentrations were witnessed around Kecskemét in central Hungary and Novi Sad in northern Serbia. These areas are also the areas with the highest density of Ambrosia habitats. The resulting inventory can be entered into atmospheric transport models in combination with other components such as a phenological model and a model for daily pollen release, in order to simulate the movement of ragweed pollen from the Pannonian Plain. The methodology is likely to be generally applicable for creating inventories of species distribution of allergenic plants. The main requirement is availability of: detailed land cover information; pollen indexes; a list of the most important habitats; and a region of interest that is mainly influenced by local sources.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background and Aims In yeasts and animals, cyclin-dependent kinases are key regulators of cell cycle progression and are negatively and positively regulated by WEE1 kinase and CDC25 phosphatase, respectively. In higher plants a full-length orthologue of CDC25 has not been isolated but a shorter gene with homology only to the C-terminal catalytic domain is present. The Arabidopis thaliana;CDC25 can act as a phosphatase in vitro. Since in arabidopsis, WEE1 plays an important role in the DNA damage/DNA replication checkpoints, the role of Arath;CDC25 in conditions that induce these checkpoints or induce abiotic stress was tested. Methods arath;cdc25 T-DNA insertion lines, Arath;CDC25 over-expressing lines and wild type were challenged with hydroxyurea (HU) and zeocin, substances that stall DNA replication and damage DNA, respectively, together with an abiotic stressor, NaCl. A molecular and phenotypic assessment was made of all genotypes Key Results There was a null phenotypic response to perturbation of Arath;CDC25 expression under control conditions. However, compared with wild type, the arath;cdc25 T-DNA insertion lines were hypersensitive to HU, whereas the Arath;CDC25 over-expressing lines were relatively insensitive. In particular, the over-expressing lines consistently outgrew the T-DNA insertion lines and wild type when challenged with HU. All genotypes were equally sensitive to zeocin and NaCl. Conclusions Arath;CDC25 plays a role in overcoming stress imposed by HU, an agent know to induce the DNA replication checkpoint in arabidopsis. However, it could not enhance tolerance to either a zeocin treatment, known to induce DNA damage, or salinity stress.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous studies have shown that ragweed pollen arrives in Poland from sources in the south, in Slovakia, the Czech Republic, Hungary and Austria. It is likely that ragweed pollen also arrives from sources in the southeast (e.g. Ukraine). This hypothesis is investigated using 13-years of pollen data and back-trajectory analysis. Ambrosia pollen data were collected at three sites in Poland, Rzeszów, Kraków and Poznań. The amount of ragweed pollen recorded at Rzeszów was significantly higher than in Poznań and Kraków. This can be related to either a higher abundance of local populations of Ambrosia in south-east Poland or the nearness of Rzeszów to foreign sources of ragweed pollen. The combined results of pollen measurements and air mass trajectory calculations identified plumes of Ambrosia pollen that were recorded at Rzeszów, Kraków and Poznań on the 4th and 5th September 1999 and the 3rd September 2002. These plumes arrived at the pollen-monitoring sites from an easterly direction indicating sources of Ambrosia pollen in eastern Poland or Ukraine. This identifies Ukraine as a possible new source of ragweed pollen for Poland and therefore an important source area of Ambrosia pollen on the European Continent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background and Aims How plant cell-cycle genes interface with development is unclear. Preliminary evidence from our laboratory suggested that over-expression of the cell cycle checkpoint gene, WEE1, repressed growth and development. Here the hypothesis is tested that the level of WEE1 has a dosage effect on growth and development in Arabidospis thaliana. To do this, a comparison was made of the development of gain- and loss-of-function WEE1 arabidopsis lines both in vivo and in vitro. Methods Hypocotyl explants from an over-expressing Arath;WEE1 line (WEE1oe), two T-DNA insertion lines (wee1-1 and wee1-4) and wild type (WT) were cultured on two-way combinations of kinetin and naphthyl acetic acid. Root growth and meristematic cell size were also examined. Key Results Quantitative data indicated a repressive effect in WEE1oe and a significant increase in morphogenetic capacity in the two T-DNA insertion lines compared with WT. Compared with WT, WEE1oe seedlings exhibited a slower cell-doubling time in the root apical meristem and a shortened primary root, with fewer laterals, whereas there were no consistent differences in the insertion lines compared with WT. However, significantly fewer adventitious roots were recorded for WEE1oe and significantly more for the insertion mutant wee1-1. Compared with WT there was a significant increase in meristem cell size in WEE1oe for all three ground tissues but for wee1-1 only cortical cell size was reduced. Conclusions There is a gene dosage effect of WEE1 on morphogenesis from hypocotyls both in vitro and in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Entry into mitosis is regulated by cyclin dependent kinases that in turn are phosphoregulated. In most eukaryotes, phosphoregulation is through WEE1 kinase and CDC25 phosphatase. In higher plants a homologous CDC25 gene is unconfirmed and hence the mitotic inducer Schizosaccharomyces pombe (Sp) cdc25 has been used as a tool in transgenic plants to probe cell cycle function. Expression of Spcdc25 in tobacco BY-2 cells accelerates entry into mitosis and depletes cytokinins; in whole plants it stimulates lateral root production. Here we show, for the first time, that alterations to cytokinin and ethylene signaling explain the rooting phenotype elicited by Spcdc25 expression in Arabidopsis. Results Expressing Spcdc25 in Arabidopsis results in increased formation of lateral and adventitious roots, a reduction of primary root width and more isodiametric cells in the root apical meristem (RAM) compared with wild type. Furthermore it stimulates root morphogenesis from hypocotyls when cultured on two way grids of increasing auxin and cytokinin concentrations. Microarray analysis of seedling roots expressing Spcdc25 reveals that expression of 167 genes is changed by > 2-fold. As well as genes related to stress responses and defence, these include 19 genes related to transcriptional regulation and signaling. Amongst these was the up-regulation of genes associated with ethylene synthesis and signaling. Seedlings expressing Spcdc25 produced 2-fold more ethylene than WT and exhibited a significant reduction in hypocotyl length both in darkness or when exposed to 10 ppm ethylene. Furthermore in Spcdc25 expressing plants, the cytokinin receptor AHK3 was down-regulated, and endogenous levels of iPA were reduced whereas endogeous IAA concentrations in the roots increased. Conclusions We suggest that the reduction in root width and change to a more isodiametric cell phenotype in the RAM in Spcdc25 expressing plants is a response to ethylene over-production. The increased rooting phenotype in Spcdc25 expressing plants is due to an increase in the ratio of endogenous auxin to cytokinin that is known to stimulate an increased rate of lateral root production. Overall, our data reveal important cross talk between cell division and plant growth regulators leading to developmental changes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, the diurnal atmospheric grass pollen concentration profile within the Danish city of Aarhus was shown to change in a systematic manner as the pollen season progressed. Although diurnal grass pollen profiles can differ greatly from day-to-day, it is common practice to establish the time of day when peak concentrations are most likely to occur using seasonally averaged diurnal profiles. Atmospheric pollen loads are highly dependent upon emissions, and different species of grass are known to flower and emit pollen at different times of the day and during different periods of the pollen season. Pollen concentrations are also influenced by meteorological factors – directly through those parameters that govern pollen dispersion and transport, and indirectly through the weather-driven flowering process. We found that three different profiles dominated the grass pollen season in Aarhus – a twin peak profile during the early season, a single evening profile during the middle of the season, and a single midday peak during the late season. Whilst this variation could not be explained by meteorological factors, no inconsistencies were found with the theory that it was driven by a succession of different grass species with different diurnal flowering patterns dominating atmospheric pollen loads as the season progressed. The potential for exposure was found to be significantly greater during the late-season period than during either the early- or mid-season periods.