3 resultados para Risk Detection

em Worcester Research and Publications - Worcester Research and Publications - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A monoclonal antibody that recognises components of the wall of sporangia of Peronospora destructor was raised. Tests using spores of higher fungi and other species of mildew demonstrated the specificity of the monoclonal. The antibody was used to develop lateral flow devices for sporangia of P. destructor. A competitive lateral flow format was developed which could detect onion downy mildew sporangia. Five-microliter gold anti-mouse IgM solution pre-mixed with 10 μl of P. destructor monoclonal antibody (EMA 242) proved the optimal concentration for detection of sporangia of P. destructor when applied to sample pads of lateral flow devices. Limits of approximately 500 sporangia of P. destructor could be detected by the absence of a test line on the lateral flow device within test samples. Using a scanning densitometer improved the sensitivity of detection. Further development and validation of the test is required if it is to be used for risk assessments of onion downy mildew in the field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

On-site detection of inoculum of polycyclic plant pathogens could potentially contribute to management of disease outbreaks. A 6-min, in-field competitive immunochromatographic lateral flow device (CLFD) assay was developed for detection of Alternaria brassicae (the cause of dark leaf spot in brassica crops) in air sampled above the crop canopy. Visual recording of the test result by eye provides a detection threshold of approximately 50 dark leaf spot conidia. Assessment using a portable reader improved test sensitivity. In combination with a weather-driven infection model, CLFD assays were evaluated as part of an in-field risk assessment to identify periods when brassica crops were at risk from A. brassicae infection. The weather-driven model overpredicted A. brassicae infection. An automated 7-day multivial cyclone air sampler combined with a daily in-field CLFD assay detected A. brassicae conidia air samples from above the crops. Integration of information from an in-field detection system (CLFD) with weather-driven mathematical models predicting pathogen infection have the potential for use within disease management systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Economic losses resulting from disease development can be reduced by accurate and early detection of plant pathogens. Early detection can provide the grower with useful information on optimal crop rotation patterns, varietal selections, appropriate control measures, harvest date and post harvest handling. Classical methods for the isolation of pathogens are commonly used only after disease symptoms. This frequently results in a delay in application of control measures at potentially important periods in crop production. This paper describes the application of both antibody and DNA based systems to monitor infection risk of air and soil borne fungal pathogens and the use of this information with mathematical models describing risk of disease associated with environmental parameters.