49 resultados para Pollen limitation index
em Worcester Research and Publications - Worcester Research and Publications - UK
Resumo:
Background. Ambrosia artemisiifolia L. is a noxious invasive alien species in Europe. It is an important aeroallergen and millions of people are exposed to its pollen. Objective. The main aim of this study is to show that atmospheric concentrations of Ambrosia pollen recorded in Denmark can be derived from local or more distant sources. Methods. This was achieved by using a combination of pollen measurements, air mass trajectory calculations using the HYPLIT model and mapping all known Ambrosia locations in Denmark and relating them to land cover types. Results. The annual pollen index recorded in Copenhagen during a 15-year period varied from a few pollen grains to more than 100. Since 2005, small quantities of Ambrosia pollen has been observed in the air every year. We have demonstrated, through a combination of Lagrangian back-trajectory calculations and atmospheric pollen measurements, that pollen arrived in Denmark via long-distance transport from centres of Ambrosia infection, such as the Pannonian Plain and Ukraine. Combining observations with results from a local scale dispersion model show that it is possible that Ambrosia pollen could be derived from local sources identified within Denmark. Conclusions. The high allergenic capacity of Ambrosia pollen means that only small amounts of pollen are relevant for allergy sufferers, and just a few plants will be sufficient to produce enough pollen to affect pollen allergy sufferers within a short distance from the source. It is necessary to adopt control measures to restrict Ambrosia numbers. Recommendations for the removal of all Ambrosia plants can effectively reduce the amount of local pollen, as long as the population of Ambrosia plants is small.
Resumo:
This study provides the first spatially detailed and complete inventory of Ambrosia pollen sources in Italy – the third largest centre of ragweed in Europe. The inventory relies on a well tested top-down approach that combines local knowledge, detailed land cover, pollen observations and a digital elevation model that assumes permanent ragweed populations mainly grow below 745m. The pollen data were obtained from 92 volumetric pollen traps located throughout Italy during 2004-2013. Land cover is derived from Corine Land cover information with 100m resolution. The digital elevation model is based on the NASA shuttle radar mission with 90m resolution. The inventory is produced using a combination of ArcGIS and Python for automation and validated using cross-correlation and has a final resolution of 5km x 5km. The method includes a harmonization of the inventory with other European inventories for the Pannonian Plain, France and Austria in order to provide a coherent picture of all major ragweed sources. The results show that the mean annual pollen index varies from 0 in South Italy to 6779 in the Po Valley. The results also show that very large pollen indexes are observed in the Milan region, but this region has smaller amounts of ragweed habitats compared to other parts of the Po Valley and known ragweed areas in France and the Pannonian Plain. A significant decrease in Ambrosia pollen concentrations was recorded in 2013 by pollen monitoring stations located in the Po Valley, particularly in the Northwest of Milan. This was the same year as the appearance of the Ophraella communa leaf beetle in Northern Italy. These results suggest that ragweed habitats near to the Milan region have very high densities of Ambrosia plants compared to other known ragweed habitats in Europe. The Milan region therefore appears to contain habitats with the largest ragweed infestation in Europe, but a smaller amount of habitats is a likely cause the pollen index to be lower compared to central parts of the Pannonian Plain. A low number of densely packed habitats may have increased the impact of the Ophraella beetle and might account for the documented decrease in airborne Ambrosia pollen levels, an event that cannot be explained by meteorology alone. Further investigations that model atmospheric pollen before and after the appearance of the beetle in this part of Northern Italy are needed to assess the influence of the beetle on airborne Ambrosia pollen concentrations. Future work will focus on short distance transport episodes for stations located in the Po Valley, and long distance transport events for stations in Central Italy that exhibit peaks in daily airborne Ambrosia pollen levels.
Resumo:
Background Birch pollen is highly allergic and has the potential for episodically long range transport. Such episodes will in general occur out of the main pollen season. During that time allergy patients are unprotected and high pollen concentrations will therefore have a full allergenic impact. Objective To show that Denmark obtains significant quantities of birch pollen from Poland or Germany before the local trees start to flower. Methods Simultaneous observations of pollen concentrations and phenology in the potential source area in Poland as well as in Denmark were performed in 2006. The Danish pollen records from 2000-2006 were analysed for possible long range transport episodes and analysed with trajectories in combination with a birch tree source map. Results In 2006 high pollen concentrations were observed in Denmark with bi-hourly concentrations above 500 grains/ m3 before the local trees began to flower. Poland was identified as a source region. The analysis of the historical pollen record from Copenhagen shows significant pre-seasonal pollen episodes almost every year from 2000-2006. In all episodes trajectory analysis identified Germany or Poland as source regions. Conclusion Denmark obtains significant pre-seasonal quantities of birch pollen from either Poland or Germany almost every year. Forecasting of birch pollen quantities relevant to allergy patients must therefore take into account long-range transport. This cannot be based on measured concentrations in Denmark. The most effective way to improve the current Danish pollen forecasts is to extend the current forecasts with atmospheric transport models that take into account pollen emission and transport from countries such as Germany and Poland. Unless long range transport is taken into account pre-seasonal pollen episodes will have a full allergic impact, as the allergy patients in general will be unprotected during that time.
Resumo:
Daily average Alnus pollen counts (1996-2005) from Worcester (UK) and Poznań (Poland) were examined with the aim of assessing the regional importance of Alnus pollen as an aeroallergen. The average number of Alnus pollen grains recorded annually at Poznań was more than 2.5 times that of Worcester. Furthermore, daily average Alnus pollen counts exceeded the thresholds of 100, 500 and 1,000 grains/m3 more times at Poznań than Worcester. Skin prick test results (1996-2005) and allergen-specific IgE(asIgE) measurements using the CAP (Pharmacia) system (2002-2005), were supplied by the Allergic Diseases Diagnostic Centre in Poznań. The annual number of positive skin prick tests to Alnus pollen allergens was significantly related (p<0.05) to seasonal variations in the magnitude of the Alnus pollen catch recorded at Poznań (r=0.70). The symptoms of patients with positive skin prick tests to Alnus pollen allergens were: 51% pollinosis, 43% atopic dermatitis, 4% asthma, 1% chronic urticaria and 1% eczema. On a scale of 0-6, 20.5% of patients examined for serum asIgE in relation to Alnus pollen allergens had asIgE measurements in classes 5 and 6. Alnus pollen is generally considered to be mildly allergenic. However, the amount of Alnus pollen released into the atmosphere in places such as Poznań may increase its impact on the population and make it one of the more important aeroallergens present.
Resumo:
The pollen grains of Ambrosia spp. are considered to be important aeroallergens in parts of southern and central Europe. Back-trajectories have been analysed with the aim of finding the likely sources of Ambrosia pollen grains that arrived at Poznań (Poland). Temporal variations in Ambrosia pollen at Poznań from 1995–2005 were examined in order to identify Ambrosia pollen episodes suitable for further investigation using back-trajectory analysis. The trajectories were calculated using the transport model within the Lagrangian air pollution model, ACDEP (Atmospheric Chemistry and Deposition). Analysis identified two separate populations in Ambrosia pollen episodes, those that peaked in the early morning between 4 a.m. and 8 a.m., and those that peaked in the afternoon between 2 p.m. and 6 p.m.. Six Ambrosia pollen episodes between 2001 and 2005 were examined using backtrajectory analysis. The results showed that Ambrosia pollen episodes that peaked in the early morning usually arrived at Poznań from a southerly direction after passing over southern Poland, the Czech Republic, Slovakia and Hungary, whereas air masses that brought Ambrosia pollen to Poznań during the afternoon arrived from a more easterly direction and predominantly stayed within the borders of Poland. Back-trajectory analysis has shown that there is a possibility that long-range transport brings Ambrosia pollen to Poznań from southern Poland, the Czech Republic, Slovakia and Hungary. There is also a likelihood that Ambrosia is present in Poland, as shown by the arrival of pollen during the afternoon that originated primarily from within the country.
Resumo:
Previous work on Betula spp. (birch) in the UK and at five sites in Europe has shown that pollen seasons for this taxon have tended to become earlier by about 5–10 days per decade in most regions investigated over the last 30 years. This pattern has been linked to the trend to warmer winters and springs in recent years. However, little work has been done to investigate the changes in the pollen seasons for the early flowering trees. Several of these, such as Alnus spp. and Corylus spp., have allergens, which cross-react with those of Betula spp., and so have a priming effect on allergic people. This paper investigates pollen seasons for Alnus spp. and Corylus spp. for the years 1996–2005 at Worcester, in the West Midlands, United Kingdom. Pollen data for daily average counts were collected using a Burkard volumetric trap sited on the exposed roof of a three-storey building. The climate is western maritime. Meteorological data for daily temperatures (maximum and minimum) and rainfall were obtained from the local monitoring sites. The local area up to approximately 10 km surrounding the site is mostly level terrain with some undulating hills and valleys. The local vegetation is mixed farmland and deciduous woodland. The pollen seasons for the two taxa investigated are typically late December or early January to late March. Various ways of defining the start and end of the pollen seasons were considered for these taxa, but the most useful was the 1% method whereby the season is deemed to have started when 1% of the total catch is achieved and to have ended when 99% is reached. The cumulative catches (in grains/m3) for Alnus spp. varied from 698 (2001) to 3,467 (2004). For Corylus spp., they varied from 65 (2001) to 4,933 (2004). The start dates for Alnus spp. showed 39 days difference in the 10 years (earliest 2000 day 21, latest 1996 day 60). The end dates differed by 26 days and the length of season differed by 15 days. The last 4 years in the set had notably higher cumulative counts than the first 2, but there was no trend towards earlier starts. For Corylus spp. start days also differed by 39 days (earliest 1999 day 5, latest 1996 day 44). The end date differed by 35 days and length of season by 26 days. Cumulative counts and lengths of season showed a distinct pattern of alternative high (long) and low (short) years. There is some evidence of a synchronous pattern for Alnus spp.. These patterns show some significant correlations with temperature and rainfall through the autumn, winter and early spring, and some relationships with growth degree 4s and chill units, but the series is too short to discern trends. The analysis has provided insight to the variation in the seasons for these early flowering trees and will form a basis for future work on building predictive models for these taxa.
Resumo:
A 30-day ahead forecast method has been developed for grass pollen at north London. The total period of the grass pollen season is covered by eight multiple regression models, each covering a 10-day period running consecutively from 21st May to 8th August. This means that three models were used for each 30-day forecast. The forecast models were produced using grass pollen and environmental data from 1961-1999 and tested on data from 2000 and 2002. Model accuracy was judged in two ways: the number of times the forecast model was able to successfully predict the severity (relative to the 1961-1999 dataset as a whole) of grass pollen counts in each of the eight forecast periods on a scale of one to four; and the number of times the forecast model was able to predict whether grass pollen counts were higher or lower than the mean. The models achieved 62.5% accuracy in both assessment years when predicting the relative severity of grass pollen counts on a scale of one to four, which equates to six of the eight 10-day periods being forecast correctly. The models attained 87.5% and 100% accuracy in 2000 and 2002 respectively when predicting whether grass pollen counts would be higher or lower than the mean. Attempting to predict pollen counts during distinct 10-day periods throughout the grass pollen season is a novel approach. The models also employed original methodology in the use of winter averages of the North Atlantic Oscillation to forecast 10-day means of allergenic pollen counts.
Resumo:
A number of media outlets now issue medium-range (~7 day) weather forecasts on a regular basis. It is therefore logical that aerobiologists should attempt to produce medium-range forecasts for allergenic pollen that cover the same time period as the weather forecasts. The objective of this study is to construct a medium-range (< 7 day) forecast model for grass pollen at north London. The forecast models were produced using regression analysis based on grass pollen and meteorological data from 1990-1999 and tested on data from 2000 and 2002. The modelling process was improved by dividing the grass pollen season into three periods; the pre-peak, peak and post peak periods of grass pollen release. The forecast consisted of five regression models. Two simple linear regression models predicting the start and end date of the peak period, and three multiple regression models forecasting daily average grass pollen counts in the pre-peak, peak and post-peak periods. Overall the forecast models achieved 62% accuracy in 2000 and 47% in 2002, reflecting the fact that the 2002 grass pollen season was of a higher magnitude than any of the other seasons included in the analysis. This study has the potential to make a notable contribution to the field of aerobiology. Winter averages of the North Atlantic Oscillation were used to predict certain characteristics of the grass pollen season, which presents an important advance in aerobiological work. The ability to predict allergenic pollen counts for a period between five and seven days will benefit allergy sufferers. Furthermore, medium-range forecasts for allergenic pollen will be of assistance to the medical profession, including allergists planning treatment and physicians scheduling clinical trials.
Resumo:
Trajectory analysis is a valuable tool that has been used before in aerobiological studies, to investigate the movement of airborne pollen. This study has employed back-trajectories to examine the four highest grass pollen episodes at Worcester, during the 2001 grass pollen season. The results have shown that the highest grass pollen counts of the 2001 season were reached when air masses arrived from a westerly direction. Back-trajectory analysis has a limited value to forecasters because the method is retrospective and cannot be employed directly for forecasting. However, when used in conjunction with meteorological data this technique can be used to examine high magnitude events in order to identify conditions that lead to high pollen counts.
Resumo:
Spatial and temporal variations in daily grass pollen counts and weather variables are described for two regions with different bio-geographical and climatic regimes, southern Spain and the United Kingdom. Daily average grass pollen counts are considered from six pollen-monitoring sites, three in southern Spain (Ciudad Real, Córdoba and Priego) and three in the United Kingdom (Edinburgh, Worcester and Cambridge). Analysis shows that rainfall and maximum temperatures are important factors controlling the magnitude of the grass pollen season in both southern Spain and the United Kingdom, and that the strength and direction of the influence exerted by these variables varies with geographical location and time.
Resumo:
Geographical and temporal variations in the start dates of grass pollen seasons are described for selected sites of the European Pollen Information Service. Daily average grass pollen counts are derived from Network sites in Finland, the Netherlands, Denmark, United Kingdom, Austria, Italy and Spain, giving a broad longitudinal transect over Western Europe. The study is part of a larger project that also examines annual and regional variations in the severity, timing of the peak and duration of the grass pollen seasons. For several sites, data are available for over twenty years enabling long term trends to be discerned. The analyses show notable contrasts in the progression of the seasons annually with differing lag times occurring between southern and northern sites in various years depending on the weather conditions. The patterns identified provide some insight into geographical differences and temporal trends in the incidence of pollinosis. The paper discusses the main difficulties involved in this type of analysis and notes possibilities for using data from the European Pollen Information service to construct pan European predictive models for pollen seasons.
Resumo:
Two of the most frequently used methods of pollen counting on slides from Hirst type traps are evaluated in this paper: the transverse traverse method and the longitudinal traverse method. The study was carried out during June–July 1996 and 1997 on slides from a trap at Worcester, UK. Three pollen types were selected for this purpose: Poaceae, Urticaceae and Quercus. The statistical results show that the daily concentrations followed similar trends (p < 0.01, R-values between 0.78–0.96) with both methods during the two years, although the counts were slightly higher using the longitudinal traverses method. Significant differences were observed, however, when the distribution of the concentrations during 24 hour sampling periods was considered. For more detailed analysis, the daily counts obtained with both methods were correlated with the total number of pollen grains for the taxon over the whole slide, in two different situations: high and low concentrations of pollen in the atmosphere. In the case of high concentrations, the counts for all three taxa with both methods are significantly correlated with the total pollen count. In the samples with low concentrations, the Poaceae and Urticaceae counts with both methods are significantly correlated with the total counts, but none of Quercus counts are. Consideration of the results indicates that both methods give a reasonable approximation to the count derived from the slide as a whole. More studies need be done to explore the comparability of counting methods in order to work towards a Universal Methodology in Aeropalynology.
Resumo:
Recent epidemics of acute asthma have caused speculation that, if their causes were known, early warnings might be feasible. In particular, some epidemics seemed to be associated with thunderstorms. We wondered what risk factors predicting epidemics could be identified. Daily asthma admissions counts during 1987-1994, for two age groups (0-14 yrs and > or = 15 yrs), were measured using the Hospital Episodes System (HES). Epidemics were defined as combinations of date, age group and English Regional Health Authority (RHA) with exceptionally high asthma admission counts compared to the predictions of a log-linear autoregression model. They were compared with control days 1 week before and afterwards, regarding seven meteorological variables and 5 day average pollen counts for four species. Fifty six asthma epidemics were identified. The mean density of sferics (lightning flashes), temperature and rainfall on epidemic days were greater than those on control days. High sferics densities were overrepresented in epidemics. Simultaneously high sferics and grass pollen further increased the probability of an epidemic, but only to 15% (95% confidence interval 2-45%). Two thirds of epidemics were not preceded by thunderstorms. Thunderstorms and high grass pollen levels precede asthma epidemics more often than expected by chance. However, most epidemics are not associated with thunderstorms or unusual weather conditions, and most thunderstorms, even following high grass pollen levels, do not precede epidemics. An early warning system based on the indicators examined here would, therefore, detect few epidemics and generate an unacceptably high rate of false alarms.
Resumo:
The occurrence of symptoms in pollen allergy patients in urban areas may be affected by local environmental factors such as sources of pollution, natural and ornamental vegetation, local architecture impeding dispersion, etc. The aim of this study was to analyse the frequency of sensitization in pollen allergy patients and the relationship with antihistamine sales. For this study, a large number of clinical records, together with pharmaceutical and pollen data, were collected between 1999 and 2001 in the city of Córdoba, in the south of the Iberian Peninsula. Differences were observed in the symptoms suffered by pollen allergy patients in different areas of the city due to varying local emission of both biological and non-biological particles. Temporal distribution of symptoms over the three study years was influenced by meteorological factors, especially rainfall patterns; higher water supply to plants was associated with increased airborne pollen concentrations. Air pollution might be one of the main factors affecting the distribution of pollen allergy patients within the city. Recent years have seen a worsening of symptoms and increased sensitization to urban species such as plane-trees.
Resumo:
Total pollen production per inflorescence was studied in the most important species of the Poaceae family in the city of Córdoba in order to further our knowledge of the partial contribution of each species of this family to the total amount of pollen released into the atmosphere. The contribution of grasses in a given area was estimated by counting the number of inflorescences in an area of one square meter. Four different representative areas of the city were selected. The number of pollen grains per anther and flowers per inflorescence was also estimated in order to obtain total pollen production per inflorescence. Pollen production per inflorescence ranged from 14,500 to more than 22,000,000 pollen grains, the amount being clearly higher in the perennial species. Pollen production per square meter was higher in the mountains near the city and lower in areas of abandoned crops. Only a few species are responsible for the majority of pollen produced. A phenological study is necessary in order to determine the temporal distribution of this pollen production and subsequent shedding.