3 resultados para Plant Closing

em Worcester Research and Publications - Worcester Research and Publications - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cell cycle comprise the four phases of, G1, S-phase, G2 and mitosis. Two critical transitions are G1/S and G2/M; the latter is regulated by WEE1 kinase and CDC25 phosphatases. The scope of this thesis was to investigate the regulation of the G2/M transition of the cell cycle by WEE1 and CDC25, and how these genes interface with plant growth regulators in Arabidopsis thaliana. In Arabidopsis roots, the frequency of lateral roots was found to be increased by ectopic expression of Schizosaccharomyces pombe (Sp)cdc25e and reduced by Arath;WEE1 expression. I examined the effect of Arath;WEE1 and Spcdc25 on induction of shoots and roots in Arabidopsis hypocotyls in vitro. Hypocotyl explants from two over-expressing WEE1 lines , three T-DNA insertion lines and two expressing cdc25 (Spcdc25e) lines together with wild type (WT) were cultured on two-way gradients of kinetin (Kin) and naphthyl acetic acid (NAA). Below a threshold concentration of NAA (100 ng ml-1), WEE1 repressed morphogenesis in vitro, whereas at all NAA/Kin combinations Spcdc25 promoted morphogenesis (particularly root formation) over and above that in WT. Loss of function wee1-1 cultures were very similar to WT. Quantitative data indicated a significant increase in the frequency of root formation in Spcdc25e cultures compared with WT particularly at low Kin concentrations, and WEE1oe’s repressive effect was overcome by NAA but not Kin. In conclusion, WEE1 has a repressive effect on morphogenesis in vitro that can be overcome by auxin whereas Spcd25 by-passes a cytokinin requirement for the induction of morphogenesis in vitro. The role of CDC25 and WEE1 in DNA damage responses was also analysed. Two over-expressing Arath;CDC25 lines and T-DNA mutants showed no difference to WT either in standard conditions or zeocin-supplemented treatments. However, root length was longer in Arath;CDC25oe lines treated with hydroxyurea (HU) and lateral root number was increased compared to WT. This suggests a differential response of Arath;CDC25oe in the DNA replication (HU-induced) and DNA damage (zeocin-induced) checkpoints (Chapter 5). Finally the roles of WEE1 and CDC25 in cell cycle regulation were examined using tobacco TBY-2 cell cultures expressing Arath;WEE1, Nicotiana tabacum (Nicta)WEE1 or Arath;CDC25. Whilst Nicta;WEE1 lengthened G2 of the cell cycle, Arath;WEE1 had an unusual effect of shortening G2 phase and Arath;CDC25 had no observable effect (Chapter 6).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oomycetes form a deep lineage of eukaryotic organisms that includes a large number of plant pathogens that threaten natural and managed ecosystems. We undertook a survey to query the community for their ranking of plant pathogenic oomycete species based on scientific and economic importance. In total, we received 263 votes from 62 scientists in 15 countries for a total of 33 species. The Top 10 species and their ranking are: (1) Phytophthora infestans; (2, tied) Hyaloperonospora arabidopsidis; (2, tied) Phytophthora ramorum; (4) Phytophthora sojae; (5) Phytophthora capsici; (6) Plasmopara viticola; (7) Phytophthora cinnamomi; (8, tied) Phytophthora parasitica; (8, tied) Pythium ultimum; and (10) Albugo candida. The article provides an introduction to these 10 taxa and a snapshot of current research. We hope that the list will serve as a benchmark for future trends in oomycete research.