1 resultado para Parallel programming model
em Worcester Research and Publications - Worcester Research and Publications - UK
Filtro por publicador
- Abertay Research Collections - Abertay University’s repository (1)
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (17)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (8)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (3)
- Archive of European Integration (3)
- Aston University Research Archive (34)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (10)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (225)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (18)
- Brock University, Canada (7)
- Bulgarian Digital Mathematics Library at IMI-BAS (14)
- CentAUR: Central Archive University of Reading - UK (48)
- Central European University - Research Support Scheme (1)
- Cochin University of Science & Technology (CUSAT), India (3)
- Coffee Science - Universidade Federal de Lavras (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (28)
- CORA - Cork Open Research Archive - University College Cork - Ireland (4)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (2)
- CUNY Academic Works (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (6)
- Digital Commons at Florida International University (11)
- Digital Peer Publishing (2)
- DigitalCommons@The Texas Medical Center (1)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (17)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (4)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (4)
- Helvia: Repositorio Institucional de la Universidad de Córdoba (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (3)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico do Porto, Portugal (29)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (2)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Massachusetts Institute of Technology (13)
- Memorial University Research Repository (1)
- National Center for Biotechnology Information - NCBI (8)
- Nottingham eTheses (1)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (1)
- Publishing Network for Geoscientific & Environmental Data (3)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (4)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- Repositorio Académico de la Universidad Nacional de Costa Rica (1)
- Repositorio Academico Digital UANL (1)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (10)
- Repositório da Produção Científica e Intelectual da Unicamp (25)
- Repositório Digital da Universidade Municipal de São Caetano do Sul - USCS (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (2)
- Repositorio Institucional de la Universidad de Málaga (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (86)
- Repositorio Institucional Universidad EAFIT - Medelin - Colombia (3)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (30)
- Scielo Saúde Pública - SP (6)
- The Scholarly Commons | School of Hotel Administration; Cornell University Research (1)
- Universidad de Alicante (9)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (87)
- Universidade Complutense de Madrid (3)
- Universidade do Minho (9)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (8)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (9)
- Université de Lausanne, Switzerland (13)
- Université de Montréal (3)
- Université de Montréal, Canada (14)
- University of Michigan (12)
- University of Queensland eSpace - Australia (36)
- University of Washington (7)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
In computer vision, training a model that performs classification effectively is highly dependent on the extracted features, and the number of training instances. Conventionally, feature detection and extraction are performed by a domain-expert who, in many cases, is expensive to employ and hard to find. Therefore, image descriptors have emerged to automate these tasks. However, designing an image descriptor still requires domain-expert intervention. Moreover, the majority of machine learning algorithms require a large number of training examples to perform well. However, labelled data is not always available or easy to acquire, and dealing with a large dataset can dramatically slow down the training process. In this paper, we propose a novel Genetic Programming based method that automatically synthesises a descriptor using only two training instances per class. The proposed method combines arithmetic operators to evolve a model that takes an image and generates a feature vector. The performance of the proposed method is assessed using six datasets for texture classification with different degrees of rotation, and is compared with seven domain-expert designed descriptors. The results show that the proposed method is robust to rotation, and has significantly outperformed, or achieved a comparable performance to, the baseline methods.