7 resultados para Mancha marrom de alternaria
em Worcester Research and Publications - Worcester Research and Publications - UK
Resumo:
This study represents the first international intercomparison of fungal spore observations since 1990, focusing on atmospheric concentrations of Alternaria, Cladosporium, Ganoderma and Didymella spores. The campaigns were performed at sites located in Cork (Ireland) and Worcester (England) during summer 2010. Observations were made using Hirst-type volumetric spore traps and corresponding optical identification at the genus level by microscope. The measurements at both sites (including meteorological parameters) were compared and contrasted. The relationships between the fungal spore concentrations with selected meteorological parameters were investigated using statistical methods and multivariate regression trees (MRT). The results showed high correlations between the two sites with respect to daily variations. Statistically significant higher spore concentrations for Alternaria, Cladosporium and Ganoderma were monitored at the Worcester site. This result was most likely due to the differences in precipitation and local fungal spore sources at the two sites. Alternaria and Cladosporium reached their maxima a month earlier in Cork than in Worcester, and Didymella with Ganoderma peaked simultaneously with similar diurnal trends found for all the investigated spore types. MRT analysis helped to determine threshold values of the meteorological parameters that exerted most influence on the presence of spores: they were found to vary at the two sites. Our results suggest that the aeromycological profile is quite uniform over the British Isles, but a description of bioaerosols with respect to overall load and daily concentration can be quite diverse although the geographical difference between sites is relatively small. These variations in the concentrations therefore need to be explored at the national level
Resumo:
There are many species among the Alternaria genus, which hosts on economically important crops causing significant yield losses. Less attention has been paid to fungi hosting on plants constituting substantial components of pastures and meadows. Alternaria spp. spores are also recognised as important allergens. A 7-day volumetric spore trap was used to monitor the concentration of airborne fungal spores. Air samples were collected in Worcester, England (2006–2010). Days with a high spore count were then selected. The longest episode that occurred within a five year study was chosen for modelling. Two source maps presenting distribution of crops under rotation and pastures in the UK were produced. Back trajectories were calculated using the HYSPLIT model. In ArcGIS clusters of trajectories were studied in connection with source maps by including the height above ground level and the speed of the air masses. During the episode no evidence for a long distance transport from the continent of Alternaria spp. spores was detected. The overall direction of the air masses fell within the range from South-West to North. The back trajectories indicated that the most important sources of Alternaria spp. spores were located in the West Midlands of England.
Resumo:
Fungi belonging to the genus of Alternaria are recognised as being significant plant pathogens, and Alternaria allergens are one of themost important causes of respiratory allergic diseases in Europe. This study aims to provide a detailed and original analysis of Alternaria transport dynamics in Badajoz, SW Spain. This was achieved by examining daily mean and hourly observations of airborne Alternaria spores recorded during days with high airborne concentrations of Alternaria spores (N100 s m−3) from 2009 to 2011, as well as four inventory maps of major Alternaria habitats, the overall synoptic weather situation and analysis of air mass transport using Hybrid Single Particle Lagrangian Integrated Trajectory model and geographic information systems. Land use calculated within a radius of 100 km from Badajoz shows that crops and grasslands are potentially the most important local sources of airborne Alternaria spores recorded at the site. The results of back trajectory analysis showthat, during the examined four episodes, the two main directions where Alternaria source areas were located were: (1) SW–W; and (2) NW–NE. Regional scale and long distance transport could therefore supplement the airborne catch recorded at Badajoz with Alternaria conidia originating from sources such as crops and orchards situated in other parts of the Iberian Peninsula.
Resumo:
Air quality is an increasing concern of the European Union, local authorities, scientists and most of all inhabitants that become more aware of the quality of the surrounding environment. Bioaerosols may be consisted of various elements, and the most important are pollen grains, fungal spores, bacteria, viruses. More than 100 genera of fungal spores have been identified as potential allergens that cause immunological response in susceptible individuals. Alternaria and Cladosporium have been recognised as the most important fungal species responsible for respiratory tract diseases, such as asthma, eczema, rhinitis and chronic sinusitis. While a lot of attention has been given to these fungal species, a limited number of studies can be found on Didymella and Ganoderma, although their allergenic properties were proved clinically. Monitoring of allergenic fungal spore concentration in the air is therefore very important, and in particular at densely populated areas like Worcester, UK. In this thesis a five year spore data set was presented, which was collected using a 7-day volumetric spore trap, analysed with the aid of light microscopy, statistical tests and geographic information system techniques. Although Kruskal-Wallis test detected statistically significant differences between annual concentrations of all examined fungal spore types, specific patterns in their distribution were also found. Alternaria spores were present in the air between mid-May/mid-June until September-October with peak occurring in August. Cladosporium sporulated between mid-May and October, with maximum concentration recorded in July. Didymella spores were seen from June/July up to September, while peaks were found in August. Ganoderma produced spores for 6 months (May-October), and maximum concentration could be found in September. With respect to diurnal fluctuations, Alternaria peaked between 22:00h and 23:00h, Cladosporium 13:00-15:00h, Didymella 04:00-05:00h and 22:00h-23:00h and Ganoderma from 03:00h to 06:00h. Spatial analysis showed that sources of all fungal species were located in England, and there was no evidence for a long distance transport from the continent. The maximum concentration of spores was found several hours delayed in comparison to the approximate time of the spore release from the crops. This was in agreement with diurnal profiles of the spore concentration recorded in Worcester, UK. Spores of Alternaria, Didymella and Ganoderma revealed a regional origin, in contrast to Cladosporium, which sources were situated locally. Hence, the weather conditions registered locally did not exhibit strong statistically significant correlations with fungal spore concentrations. This has had also an impact on the performance of the forecasting models. The best model was obtained for Cladosporium with 66% of the accuracy.
Resumo:
We explored the temporal and spatial variations in airborne Alternaria spore quantitative and phenological features in Europe using 23 sites with annual time series between 3 and 15 years. The study covers seven countries and four of the main biogeographical regions in Europe. The observations were obtained with Hirst-type spore traps providing time series with daily records. Site locations extend from Spain in the south to Denmark in the north and from England in the West to Poland in the East. The study is therefore the largest assessment ever carried out for Europe concerning Alternaria. Aerobiological data were investigated for temporal and spatial patterns in their start and peak season dates and their spore indices. Moreover, the effects of climate were checked using meteorological data for the same period, using a crop growth model. We found that local climate, vegetation patterns and management of landscape are governing parameters for the overall spore concentration, while the annual variations caused by weather are of secondary importance but should not be neglected. The start of the Alternaria spore season varies by several months in Europe, but the peak of the season is more synchronised in central northern Europe in the middle of the summer, while many southern sites have peak dates either earlier or later than northern Europe. The use of a crop growth model to explain the start and peak of season suggests that such methods could be useful to describe Alternaria seasonality in areas with no available observations.
Resumo:
On-site detection of inoculum of polycyclic plant pathogens could potentially contribute to management of disease outbreaks. A 6-min, in-field competitive immunochromatographic lateral flow device (CLFD) assay was developed for detection of Alternaria brassicae (the cause of dark leaf spot in brassica crops) in air sampled above the crop canopy. Visual recording of the test result by eye provides a detection threshold of approximately 50 dark leaf spot conidia. Assessment using a portable reader improved test sensitivity. In combination with a weather-driven infection model, CLFD assays were evaluated as part of an in-field risk assessment to identify periods when brassica crops were at risk from A. brassicae infection. The weather-driven model overpredicted A. brassicae infection. An automated 7-day multivial cyclone air sampler combined with a daily in-field CLFD assay detected A. brassicae conidia air samples from above the crops. Integration of information from an in-field detection system (CLFD) with weather-driven mathematical models predicting pathogen infection have the potential for use within disease management systems.
Resumo:
The impact of climate change on fungal growth and spore production is less well documented than for allergenic pollen grains, although similar implications for respiratory tract diseases in humans occur. Fungal spores are commonly described as either “dry” or “wet” according to the type of weather associated with their occurrence in the air. This study examined the distribution of selected fungal spores (Alternaria spp., Cladosporium spp., Didymella spp., Epicoccum spp., Leptosphaeria spp. and rusts) occurring in the West Midlands of UK during 2 years of contrasting weather. Spore specimens were collected using a 7-day volumetric air sampler and then analysed with the aid of light microscopy. Distributions of spores were then studied using normality tests and Mann–Whitney U test, while relationships with meteorological parameters were investigated using Spearman’s rank test and angular-linear correlation for wind direction analysis. Our results showed that so-called wet spores were more sensitive to the weather changes showing statistically significant differences between the 2 years of study, in contrast to “dry” spores. We predict that in following years we will observe accelerated levels in allergenic fungal spore production as well as changes in species diversity. This study could be a starting point to revise the grouping system of fungal spores as either “dry” or “wet” types and their response to climate change