2 resultados para Male famale relationship
em Worcester Research and Publications - Worcester Research and Publications - UK
Resumo:
The aims of this study were to 1) determine the relationship between performance on the court-based TIVRE-Basket® test and peak aerobic power determined from a criterion lab-based incremental treadmill test and 2) to examine the test-retest reliability of the TIVRE-Basket® test in elite male basketball players. To address aim 1, 36 elite male basketball players (age 25.2 + 4.7 years, weight 94.1 + 11.4 kg, height 195.83 + 9.6 cm) completed a graded treadmill exercise test and the TIVRE-Basket® within 72 hours. Mean distance recorded during the TIVRE-Basket® test was 4001.8 + 176.4m, and mean VO2 peak was 54.7 + 2.8 ml.kg.min-1, and the correlation between the two parameters was r=0.824 (P= <0.001). Linear regression analysis identified TIVRE-Basket® distance (m) as the only unique predictor of VO2 peak in a single variable plus constant model: VO2 peak = 2.595 + ((0.13* TIVRE-Basket® distance (m)). Performance on the TIVRE-Basket® test accounted for 67.8% of the variance in VO2 peak (t=8.466, P=<.001, 95% CI 0.01 - 0.016, SEE 1.61). To address aim 2, 20 male basketball players (age 26.7±4.2; height 1.94±0.92; weight 94.0±9.1) performed the TIVRE-Basket® test on two occasions. There was no significant difference in total distance covered between Trial 1 (4138.8 + 677.3m) and Trial 2 (4188.0 + 648.8m; t = 0.5798, P = 0.5688). Mean difference between trials was 49.2 + 399.5m, with an ICC of 0.85 suggesting a moderate level of reliability. Standardised TEM was 0.88%, representing a moderate degree of trial to trial error, and the CV was 6.3%. The TIVRE-Basket® test therefore represents a valid and moderately reliable court-based sport-specific test of aerobic power for use with individuals and teams of elite level male basketball players. Future research is required to ascertain its validity and reliability in other basketball populations e.g. across age groups, at different levels of competition, in females and in different forms of the game e.g. wheelchair basketball.
Resumo:
Purpose The purpose of the present study was to develop and describe a simple method to evaluate the rate of ion reabsorption of eccrine sweat glands in human using the measurement of galvanic skin conductance (GSC) and local sweating rate (SR). This purpose was investigated by comparing the SR threshold for increasing GSC with following two criteria of sweat ion reabsorption in earlier studies such as 1) the SR threshold for increasing sweat ion was at approximately 0.2 to 0.5 mg/cm2/min and 2) exercise-heat acclimation improved the sweat ion reabsorption ability and would increase the criteria 1. Methods Seven healthy non-heat-acclimated male subjects received passive heat treatment both before and after 7 days of cycling in hot conditions (50% maximum oxygen uptake, 60 min/day, ambient temperature 32°C, and 50% relative humidity). Results Subjects became partially heat-acclimated, as evidenced by the decreased end-exercise heart rate (p<0.01), rate of perceived exhaustion (p<0.01), and oesophageal temperature (p=0.07), without alterations in whole-body sweat loss, from the first to the last day of training. As hypothesised, we confirmed that the SR threshold for increasing GSC was near the predicted SR during passive heating before exercise heat acclimation, and increased significantly after training (0.19 ± 0.09 to 0.32 ± 0.10 mg/cm2/min, p<0.05). Conclusions The reproducibility of sweat ion reabsorption by the eccrine glands in the present study suggests that the relationship between GSC and SR can serve as a new index for assessing the maximum rate of sweat ion reabsorption of eccrine sweat glands in humans.