3 resultados para Load test on SPT sampler
em Worcester Research and Publications - Worcester Research and Publications - UK
Resumo:
The aims of this study were to 1) determine the relationship between performance on the court-based TIVRE-Basket® test and peak aerobic power determined from a criterion lab-based incremental treadmill test and 2) to examine the test-retest reliability of the TIVRE-Basket® test in elite male basketball players. To address aim 1, 36 elite male basketball players (age 25.2 + 4.7 years, weight 94.1 + 11.4 kg, height 195.83 + 9.6 cm) completed a graded treadmill exercise test and the TIVRE-Basket® within 72 hours. Mean distance recorded during the TIVRE-Basket® test was 4001.8 + 176.4m, and mean VO2 peak was 54.7 + 2.8 ml.kg.min-1, and the correlation between the two parameters was r=0.824 (P= <0.001). Linear regression analysis identified TIVRE-Basket® distance (m) as the only unique predictor of VO2 peak in a single variable plus constant model: VO2 peak = 2.595 + ((0.13* TIVRE-Basket® distance (m)). Performance on the TIVRE-Basket® test accounted for 67.8% of the variance in VO2 peak (t=8.466, P=<.001, 95% CI 0.01 - 0.016, SEE 1.61). To address aim 2, 20 male basketball players (age 26.7±4.2; height 1.94±0.92; weight 94.0±9.1) performed the TIVRE-Basket® test on two occasions. There was no significant difference in total distance covered between Trial 1 (4138.8 + 677.3m) and Trial 2 (4188.0 + 648.8m; t = 0.5798, P = 0.5688). Mean difference between trials was 49.2 + 399.5m, with an ICC of 0.85 suggesting a moderate level of reliability. Standardised TEM was 0.88%, representing a moderate degree of trial to trial error, and the CV was 6.3%. The TIVRE-Basket® test therefore represents a valid and moderately reliable court-based sport-specific test of aerobic power for use with individuals and teams of elite level male basketball players. Future research is required to ascertain its validity and reliability in other basketball populations e.g. across age groups, at different levels of competition, in females and in different forms of the game e.g. wheelchair basketball.
Resumo:
Introduction: In aerobiological studies it is often necessary to compare concentration data recorded with different models of sampling instrument. Sampler efficiency typically varies from device to device, and depends on the target aerosol and local atmospheric conditions. To account for these differences inter-sampler correction factors may be applied, however for many pollen samplers and pollen taxa such correction factors do not exist and cannot be derived from existing published work. Materials and methods: In this study the relative efficiencies of the Burkard 7-Day Recording Volumetric Spore Trap, the Sampling Technologies Rotorod Model 20 and the Burkard Personal Volumetric Air Sampler were evaluated for Urticaceae and Poaceae pollen under field conditions, and the influence of wind speed and relative humidity on these efficiency relationships was assessed. Data for the two pollen taxa were collected during 2010 and 2011-12 respectively. Results: The three devices were found to record significantly different concentrations for both pollen taxa, with the exception of the 7-Day and Rotorod samplers for Poaceae pollen. Under the range of conditions present during the study wind speed was found to only have a significant impact on inter-sampler relationships involving the vertically orientated Burkard Personal sampler, whilst no interaction between relative efficiency and relative humidity was observed. Conclusions: Data collected with the three models of sampler should only be compared once the appropriate correction has been made, with wind speed taken into account where appropriate.
Resumo:
The impact of climate change on fungal growth and spore production is less well documented than for allergenic pollen grains, although similar implications for respiratory tract diseases in humans occur. Fungal spores are commonly described as either “dry” or “wet” according to the type of weather associated with their occurrence in the air. This study examined the distribution of selected fungal spores (Alternaria spp., Cladosporium spp., Didymella spp., Epicoccum spp., Leptosphaeria spp. and rusts) occurring in the West Midlands of UK during 2 years of contrasting weather. Spore specimens were collected using a 7-day volumetric air sampler and then analysed with the aid of light microscopy. Distributions of spores were then studied using normality tests and Mann–Whitney U test, while relationships with meteorological parameters were investigated using Spearman’s rank test and angular-linear correlation for wind direction analysis. Our results showed that so-called wet spores were more sensitive to the weather changes showing statistically significant differences between the 2 years of study, in contrast to “dry” spores. We predict that in following years we will observe accelerated levels in allergenic fungal spore production as well as changes in species diversity. This study could be a starting point to revise the grouping system of fungal spores as either “dry” or “wet” types and their response to climate change