1 resultado para Linear programming models
em Worcester Research and Publications - Worcester Research and Publications - UK
Filtro por publicador
- Academic Research Repository at Institute of Developing Economies (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (16)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Aquatic Commons (2)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (5)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (3)
- Aston University Research Archive (24)
- Biblioteca de Teses e Dissertações da USP (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (20)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (27)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (12)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (59)
- Boston University Digital Common (1)
- Brock University, Canada (1)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (4)
- CaltechTHESIS (5)
- Cambridge University Engineering Department Publications Database (25)
- CentAUR: Central Archive University of Reading - UK (37)
- Central European University - Research Support Scheme (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (13)
- Cochin University of Science & Technology (CUSAT), India (2)
- Collection Of Biostatistics Research Archive (12)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (8)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (5)
- Dalarna University College Electronic Archive (8)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (2)
- Digital Peer Publishing (4)
- DigitalCommons@The Texas Medical Center (14)
- DigitalCommons@University of Nebraska - Lincoln (8)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (6)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (8)
- FAUBA DIGITAL: Repositorio institucional científico y académico de la Facultad de Agronomia de la Universidad de Buenos Aires (2)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (4)
- Helda - Digital Repository of University of Helsinki (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (60)
- Instituto Politécnico do Porto, Portugal (37)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (5)
- National Center for Biotechnology Information - NCBI (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- Publishing Network for Geoscientific & Environmental Data (4)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (55)
- Queensland University of Technology - ePrints Archive (53)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- Repositório Aberto da Universidade Aberta de Portugal (1)
- Repositorio Academico Digital UANL (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (7)
- Repositorio de la Universidad de Cuenca (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (4)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (6)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (1)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (174)
- SAPIENTIA - Universidade do Algarve - Portugal (3)
- The Scholarly Commons | School of Hotel Administration; Cornell University Research (2)
- Universidad de Alicante (5)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (16)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (4)
- Universitat de Girona, Spain (5)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (5)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (30)
- Université Laval Mémoires et thèses électroniques (1)
- University of Connecticut - USA (2)
- University of Michigan (20)
- University of Queensland eSpace - Australia (4)
- University of Southampton, United Kingdom (16)
- University of Washington (2)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
A number of media outlets now issue medium-range (~7 day) weather forecasts on a regular basis. It is therefore logical that aerobiologists should attempt to produce medium-range forecasts for allergenic pollen that cover the same time period as the weather forecasts. The objective of this study is to construct a medium-range (< 7 day) forecast model for grass pollen at north London. The forecast models were produced using regression analysis based on grass pollen and meteorological data from 1990-1999 and tested on data from 2000 and 2002. The modelling process was improved by dividing the grass pollen season into three periods; the pre-peak, peak and post peak periods of grass pollen release. The forecast consisted of five regression models. Two simple linear regression models predicting the start and end date of the peak period, and three multiple regression models forecasting daily average grass pollen counts in the pre-peak, peak and post-peak periods. Overall the forecast models achieved 62% accuracy in 2000 and 47% in 2002, reflecting the fact that the 2002 grass pollen season was of a higher magnitude than any of the other seasons included in the analysis. This study has the potential to make a notable contribution to the field of aerobiology. Winter averages of the North Atlantic Oscillation were used to predict certain characteristics of the grass pollen season, which presents an important advance in aerobiological work. The ability to predict allergenic pollen counts for a period between five and seven days will benefit allergy sufferers. Furthermore, medium-range forecasts for allergenic pollen will be of assistance to the medical profession, including allergists planning treatment and physicians scheduling clinical trials.